These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


809 related items for PubMed ID: 15772076

  • 1. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses.
    Smith EM, Finn SG, Tee AR, Browne GJ, Proud CG.
    J Biol Chem; 2005 May 13; 280(19):18717-27. PubMed ID: 15772076
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. RhoA modulates signaling through the mechanistic target of rapamycin complex 1 (mTORC1) in mammalian cells.
    Gordon BS, Kazi AA, Coleman CS, Dennis MD, Chau V, Jefferson LS, Kimball SR.
    Cell Signal; 2014 Mar 13; 26(3):461-7. PubMed ID: 24316235
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Molecular mechanisms through which amino acids mediate signaling through the mammalian target of rapamycin.
    Kimball SR, Jefferson LS.
    Curr Opin Clin Nutr Metab Care; 2004 Jan 13; 7(1):39-44. PubMed ID: 15090902
    [Abstract] [Full Text] [Related]

  • 8. Regulation of B-Raf kinase activity by tuberin and Rheb is mammalian target of rapamycin (mTOR)-independent.
    Karbowniczek M, Cash T, Cheung M, Robertson GP, Astrinidis A, Henske EP.
    J Biol Chem; 2004 Jul 16; 279(29):29930-7. PubMed ID: 15150271
    [Abstract] [Full Text] [Related]

  • 9. Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity.
    Li Y, Inoki K, Guan KL.
    Mol Cell Biol; 2004 Sep 16; 24(18):7965-75. PubMed ID: 15340059
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Rheb binds and regulates the mTOR kinase.
    Long X, Lin Y, Ortiz-Vega S, Yonezawa K, Avruch J.
    Curr Biol; 2005 Apr 26; 15(8):702-13. PubMed ID: 15854902
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Tuberous sclerosis-2 (TSC2) regulates the stability of death-associated protein kinase-1 (DAPK) through a lysosome-dependent degradation pathway.
    Lin Y, Henderson P, Pettersson S, Satsangi J, Hupp T, Stevens C.
    FEBS J; 2011 Jan 26; 278(2):354-70. PubMed ID: 21134130
    [Abstract] [Full Text] [Related]

  • 17. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity.
    Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N.
    J Biol Chem; 2005 Sep 16; 280(37):32081-9. PubMed ID: 16027121
    [Abstract] [Full Text] [Related]

  • 18. Frequent [corrected] hyperphosphorylation of ribosomal protein S6 [corrected] in lymphangioleiomyomatosis-associated angiomyolipomas.
    Robb VA, Astrinidis A, Henske EP.
    Mod Pathol; 2006 Jun 16; 19(6):839-46. PubMed ID: 16575396
    [Abstract] [Full Text] [Related]

  • 19. c-myc Repression of TSC2 contributes to control of translation initiation and Myc-induced transformation.
    Ravitz MJ, Chen L, Lynch M, Schmidt EV.
    Cancer Res; 2007 Dec 01; 67(23):11209-17. PubMed ID: 18056446
    [Abstract] [Full Text] [Related]

  • 20. Rapid turnover of the mTOR complex 1 (mTORC1) repressor REDD1 and activation of mTORC1 signaling following inhibition of protein synthesis.
    Kimball SR, Do AND, Kutzler L, Cavener DR, Jefferson LS.
    J Biol Chem; 2008 Feb 08; 283(6):3465-3475. PubMed ID: 18070882
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 41.