These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Effects of dissolved organic matter on phototransformation rates and dioxin products of triclosan and 2'-HO-BDE-28 in estuarine water. Zhang YN, Xie Q, Sun G, Yang K, Song S, Chen J, Zhou C, Li Y. Environ Sci Process Impacts; 2016 Sep 14; 18(9):1177-84. PubMed ID: 27383795 [Abstract] [Full Text] [Related]
3. Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation. Kliegman S, Eustis SN, Arnold WA, McNeill K. Environ Sci Technol; 2013 Jul 02; 47(13):6756-63. PubMed ID: 23282071 [Abstract] [Full Text] [Related]
4. Correlating the chemical and spectroscopic characteristics of natural organic matter with the photodegradation of sulfamerazine. Batista APS, Teixeira ACSC, Cooper WJ, Cottrell BA. Water Res; 2016 Apr 15; 93():20-29. PubMed ID: 26878479 [Abstract] [Full Text] [Related]
5. Aquatic photochemistry of chlorinated triclosan derivatives: potential source of polychlorodibenzo-p-dioxins. Buth JM, Grandbois M, Vikesland PJ, McNeill K, Arnold WA. Environ Toxicol Chem; 2009 Dec 15; 28(12):2555-63. PubMed ID: 19908930 [Abstract] [Full Text] [Related]
6. Transformation of triclosan to 2,8-dichlorodibenzo-p-dioxin by iron and manganese oxides under near dry conditions. Ding J, Su M, Wu C, Lin K. Chemosphere; 2015 Aug 15; 133():41-6. PubMed ID: 25880455 [Abstract] [Full Text] [Related]
7. Kinetics of OH radical reactions with dibenzo-p-dioxin and selected chlorinated dibenzo-p-dioxins. Taylor PH, Yamada T, Neuforth A. Chemosphere; 2005 Jan 15; 58(3):243-52. PubMed ID: 15581927 [Abstract] [Full Text] [Related]
9. Confirmation of the formation of dichlorodibenzo-p-dioxin in the photodegradation of triclosan by photo-SPME. Lores M, Llompart M, Sanchez-Prado L, Garcia-Jares C, Cela R. Anal Bioanal Chem; 2005 Mar 15; 381(6):1294-8. PubMed ID: 15702305 [Abstract] [Full Text] [Related]
10. Further research on the photo-SPME of triclosan. Sánchez-Prado L, Llompart M, Lores M, Fernández-Alvarez M, García-Jares C, Cela R. Anal Bioanal Chem; 2006 Apr 15; 384(7-8):1548-57. PubMed ID: 16520937 [Abstract] [Full Text] [Related]
11. Chemical conversion pathways and kinetic modeling for the OH-initiated reaction of triclosan in gas-phase. Zhang X, Zhang C, Sun X, Kang L, Zhao Y. Int J Mol Sci; 2015 Apr 10; 16(4):8128-41. PubMed ID: 25867482 [Abstract] [Full Text] [Related]
12. Photolytic degradation of triclosan in freshwater and seawater. Aranami K, Readman JW. Chemosphere; 2007 Jan 10; 66(6):1052-6. PubMed ID: 16930676 [Abstract] [Full Text] [Related]
13. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction. Sanchez-Prado L, Llompart M, Lores M, García-Jares C, Bayona JM, Cela R. Chemosphere; 2006 Nov 10; 65(8):1338-47. PubMed ID: 16735047 [Abstract] [Full Text] [Related]
14. Degradation of triclosan in the presence of p-aminobenzoic acid under simulated sunlight irradiation. Zhai P, Chen X, Dong W, Li H, Chovelon JM. Environ Sci Pollut Res Int; 2017 Jan 10; 24(1):558-567. PubMed ID: 27734316 [Abstract] [Full Text] [Related]
15. Photosensitized degradation of caffeine: role of fulvic acids and nitrate. Jacobs LE, Weavers LK, Houtz EF, Chin YP. Chemosphere; 2012 Jan 10; 86(2):124-9. PubMed ID: 22055309 [Abstract] [Full Text] [Related]
16. Faster photodegradation rate and higher dioxin yield of triclosan induced by cationic surfactant CTAB. Qiao X, Zheng X, Xie Q, Yang X, Xiao J, Xue W, Chen J. J Hazard Mater; 2014 Jun 30; 275():210-4. PubMed ID: 24857904 [Abstract] [Full Text] [Related]
17. Photochemical fate of atorvastatin (lipitor) in simulated natural waters. Razavi B, Ben Abdelmelek S, Song W, O'Shea KE, Cooper WJ. Water Res; 2011 Jan 30; 45(2):625-31. PubMed ID: 20801479 [Abstract] [Full Text] [Related]