These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


419 related items for PubMed ID: 1578008

  • 1. Ultrastructure of the horseshoe bat's organ of Corti. I. Scanning electron microscopy.
    Vater M, Lenoir M.
    J Comp Neurol; 1992 Apr 22; 318(4):367-79. PubMed ID: 1578008
    [Abstract] [Full Text] [Related]

  • 2. Ultrastructure of the horseshoe bat's organ of Corti. II. Transmission electron microscopy.
    Vater M, Lenoir M, Pujol R.
    J Comp Neurol; 1992 Apr 22; 318(4):380-91. PubMed ID: 1578009
    [Abstract] [Full Text] [Related]

  • 3. Ototoxicity of tobramycin in young adult and old rats.
    Dormans JA, Peters-Volleberg GW, Dortant PM, Speijers GJ.
    Toxicol Appl Pharmacol; 1996 Jan 22; 136(1):179-85. PubMed ID: 8560472
    [Abstract] [Full Text] [Related]

  • 4. Development of the organ of Corti in horseshoe bats: scanning and transmission electron microscopy.
    Vater M, Lenoir M, Pujol R.
    J Comp Neurol; 1997 Jan 27; 377(4):520-34. PubMed ID: 9007190
    [Abstract] [Full Text] [Related]

  • 5. Characteristics of echolocating bats' auditory stereocilia length, compared with other mammals.
    Yao Q, Zeng J, Zheng Y, Latham J, Liang B, Jiang L, Zhang S.
    Sci China C Life Sci; 2007 Aug 27; 50(4):492-6. PubMed ID: 17653670
    [Abstract] [Full Text] [Related]

  • 6. The arrangements of F-actin, tubulin and fodrin in the organ of Corti of the horseshoe bat (Rhinolophus rouxi) and the gerbil (Meriones unguiculatus).
    Kuhn B, Vater M.
    Hear Res; 1995 Apr 27; 84(1-2):139-56. PubMed ID: 7642447
    [Abstract] [Full Text] [Related]

  • 7. Postnatal development of the hamster cochlea. I. Growth of hair cells and the organ of Corti.
    Kaltenbach JA, Falzarano PR.
    J Comp Neurol; 1994 Feb 01; 340(1):87-97. PubMed ID: 8176004
    [Abstract] [Full Text] [Related]

  • 8. Morphological changes of hair cell stereocilia and tectorial membrane in guinea pigs with experimentally induced hydrops.
    Rydmarker S, Horner KC.
    Scanning Microsc; 1990 Sep 01; 4(3):705-13; discussion 713-4. PubMed ID: 2080433
    [Abstract] [Full Text] [Related]

  • 9. Postnatal development of the hamster cochlea. II. Growth and differentiation of stereocilia bundles.
    Kaltenbach JA, Falzarano PR, Simpson TH.
    J Comp Neurol; 1994 Dec 08; 350(2):187-98. PubMed ID: 7884037
    [Abstract] [Full Text] [Related]

  • 10. Observation on Corti's organ of entire cochlea in the guinea pig by scanning electron microscopy.
    Gu ZP, Goodwen J.
    Chin Med J (Engl); 1989 Apr 08; 102(4):251-6. PubMed ID: 2507237
    [Abstract] [Full Text] [Related]

  • 11. Tectorial membrane-organ of Corti relationship during cochlear development.
    Rueda J, Cantos R, Lim DJ.
    Anat Embryol (Berl); 1996 Nov 08; 194(5):501-14. PubMed ID: 8905016
    [Abstract] [Full Text] [Related]

  • 12. Morphological indications of hair cell neodifferentiation in the organ of Corti of amikacin treated rat pups.
    Lenoir M, Vago P.
    C R Acad Sci III; 1996 Apr 08; 319(4):269-76. PubMed ID: 8762976
    [Abstract] [Full Text] [Related]

  • 13. High resolution scanning electron microscopy of stereocilia in the cochlea of normal, postmortem, and drug-treated guinea pigs.
    Osborne MP, Comis SD.
    J Electron Microsc Tech; 1990 Jul 08; 15(3):245-60. PubMed ID: 2374035
    [Abstract] [Full Text] [Related]

  • 14. Stereocilia of sensory cells in normal and hearing impaired ears. A morphological, physiological and behavioural study.
    Engström B.
    Scand Audiol Suppl; 1983 Jul 08; 19():1-34. PubMed ID: 6420877
    [Abstract] [Full Text] [Related]

  • 15. Relation of focal hair-cell lesions to noise-exposure parameters from a 4- or a 0.5-kHz octave band of noise.
    Harding GW, Bohne BA.
    Hear Res; 2009 Aug 08; 254(1-2):54-63. PubMed ID: 19393307
    [Abstract] [Full Text] [Related]

  • 16. Ultrastructure of the Odontocete organ of Corti: scanning and transmission electron microscopy.
    Morell M, Lenoir M, Shadwick RE, Jauniaux T, Dabin W, Begeman L, Ferreira M, Maestre I, Degollada E, Hernandez-Milian G, Cazevieille C, Fortuño JM, Vogl W, Puel JL, André M.
    J Comp Neurol; 2015 Feb 15; 523(3):431-48. PubMed ID: 25269663
    [Abstract] [Full Text] [Related]

  • 17. Developmental morphology of the mouse inner ear. A scanning electron microscopic observation.
    Lim DJ, Anniko M.
    Acta Otolaryngol Suppl; 1985 Feb 15; 422():1-69. PubMed ID: 3877398
    [Abstract] [Full Text] [Related]

  • 18. Semiquantitative analysis by scanning electron microscopy of cochlear hair cell damage by ototoxic drugs.
    Saito T, Manabe Y, Honda N, Yamada T, Yamamoto T, Saito H.
    Scanning Microsc; 1995 Mar 15; 9(1):271-80; discussion 280-1. PubMed ID: 8553022
    [Abstract] [Full Text] [Related]

  • 19. High resolution scanning electron microscopy of the human organ of Corti. A study using freshly fixed surgical specimens.
    Glueckert R, Pfaller K, Kinnefors A, Schrott-Fischer A, Rask-Andersen H.
    Hear Res; 2005 Jan 15; 199(1-2):40-56. PubMed ID: 15574299
    [Abstract] [Full Text] [Related]

  • 20. Cochlear effects of cryosurgery.
    Suzuki M, Hunter-Duvar IM.
    Scan Electron Microsc; 1982 Jan 15; (Pt 3):1295-300. PubMed ID: 7170607
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.