These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


133 related items for PubMed ID: 15788400

  • 1. Nucleotide- and stoichiometry-dependent DNA supercoiling by reverse gyrase.
    Hsieh TS, Capp C.
    J Biol Chem; 2005 May 27; 280(21):20467-75. PubMed ID: 15788400
    [Abstract] [Full Text] [Related]

  • 2. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP, Klostermeier D.
    J Mol Biol; 2007 Aug 03; 371(1):197-209. PubMed ID: 17560602
    [Abstract] [Full Text] [Related]

  • 3. Reverse gyrase functions as a DNA renaturase: annealing of complementary single-stranded circles and positive supercoiling of a bubble substrate.
    Hsieh TS, Plank JL.
    J Biol Chem; 2006 Mar 03; 281(9):5640-7. PubMed ID: 16407212
    [Abstract] [Full Text] [Related]

  • 4. Investigating the role of the latch in the positive supercoiling mechanism of reverse gyrase.
    Rodríguez AC.
    Biochemistry; 2003 May 27; 42(20):5993-6004. PubMed ID: 12755601
    [Abstract] [Full Text] [Related]

  • 5. The conformational flexibility of the helicase-like domain from Thermotoga maritima reverse gyrase is restricted by the topoisomerase domain.
    del Toro Duany Y, Klostermeier D, Rudolph MG.
    Biochemistry; 2011 Jul 05; 50(26):5816-23. PubMed ID: 21627332
    [Abstract] [Full Text] [Related]

  • 6. A β-hairpin is a Minimal Latch that Supports Positive Supercoiling by Reverse Gyrase.
    Collin F, Weisslocker-Schaetzel M, Klostermeier D.
    J Mol Biol; 2020 Jul 24; 432(16):4762-4771. PubMed ID: 32592697
    [Abstract] [Full Text] [Related]

  • 7. Mutational analysis of the helicase-like domain of Thermotoga maritima reverse gyrase.
    de la Tour CB, Amrani L, Cossard R, Neuman KC, Serre MC, Duguet M.
    J Biol Chem; 2008 Oct 10; 283(41):27395-27402. PubMed ID: 18614530
    [Abstract] [Full Text] [Related]

  • 8. The latch modulates nucleotide and DNA binding to the helicase-like domain of Thermotoga maritima reverse gyrase and is required for positive DNA supercoiling.
    Ganguly A, Del Toro Duany Y, Rudolph MG, Klostermeier D.
    Nucleic Acids Res; 2011 Mar 10; 39(5):1789-800. PubMed ID: 21051354
    [Abstract] [Full Text] [Related]

  • 9. Crystal structures of Thermotoga maritima reverse gyrase: inferences for the mechanism of positive DNA supercoiling.
    Rudolph MG, del Toro Duany Y, Jungblut SP, Ganguly A, Klostermeier D.
    Nucleic Acids Res; 2013 Jan 10; 41(2):1058-70. PubMed ID: 23209025
    [Abstract] [Full Text] [Related]

  • 10. Slow interaction of 5'-adenylyl-beta,gamma-imidodiphosphate with Escherichia coli DNA gyrase. Evidence for cooperativity in nucleotide binding.
    Tamura JK, Bates AD, Gellert M.
    J Biol Chem; 1992 May 05; 267(13):9214-22. PubMed ID: 1315750
    [Abstract] [Full Text] [Related]

  • 11. The reverse gyrase helicase-like domain is a nucleotide-dependent switch that is attenuated by the topoisomerase domain.
    del Toro Duany Y, Jungblut SP, Schmidt AS, Klostermeier D.
    Nucleic Acids Res; 2008 Oct 05; 36(18):5882-95. PubMed ID: 18796525
    [Abstract] [Full Text] [Related]

  • 12. Reverse gyrase transiently unwinds double-stranded DNA in an ATP-dependent reaction.
    Ganguly A, del Toro Duany Y, Klostermeier D.
    J Mol Biol; 2013 Jan 09; 425(1):32-40. PubMed ID: 23123378
    [Abstract] [Full Text] [Related]

  • 13. Crystal structure of reverse gyrase: insights into the positive supercoiling of DNA.
    Rodríguez AC, Stock D.
    EMBO J; 2002 Feb 01; 21(3):418-26. PubMed ID: 11823434
    [Abstract] [Full Text] [Related]

  • 14. Studies of a positive supercoiling machine. Nucleotide hydrolysis and a multifunctional "latch" in the mechanism of reverse gyrase.
    Rodriguez AC.
    J Biol Chem; 2002 Aug 16; 277(33):29865-73. PubMed ID: 12048189
    [Abstract] [Full Text] [Related]

  • 15. Reverse gyrase--recent advances and current mechanistic understanding of positive DNA supercoiling.
    Lulchev P, Klostermeier D.
    Nucleic Acids Res; 2014 Jul 16; 42(13):8200-13. PubMed ID: 25013168
    [Abstract] [Full Text] [Related]

  • 16. Differential contributions of the latch in Thermotoga maritima reverse gyrase to the binding of single-stranded DNA before and after ATP hydrolysis.
    Del Toro Duany Y, Ganguly A, Klostermeier D.
    Biol Chem; 2014 Jan 16; 395(1):83-93. PubMed ID: 23959663
    [Abstract] [Full Text] [Related]

  • 17. DNA supercoiling during ATP-dependent DNA translocation by the type I restriction enzyme EcoAI.
    Janscak P, Bickle TA.
    J Mol Biol; 2000 Jan 28; 295(4):1089-99. PubMed ID: 10656812
    [Abstract] [Full Text] [Related]

  • 18. Energy coupling in Escherichia coli DNA gyrase: the relationship between nucleotide binding, strand passage, and DNA supercoiling.
    Bates AD, O'Dea MH, Gellert M.
    Biochemistry; 1996 Feb 06; 35(5):1408-16. PubMed ID: 8634270
    [Abstract] [Full Text] [Related]

  • 19. Structure of reverse gyrase with a minimal latch that supports ATP-dependent positive supercoiling without specific interactions with the topoisomerase domain.
    Mhaindarkar VP, Rasche R, Kümmel D, Rudolph MG, Klostermeier D.
    Acta Crystallogr D Struct Biol; 2023 Jun 01; 79(Pt 6):498-507. PubMed ID: 37204816
    [Abstract] [Full Text] [Related]

  • 20. Nucleotide-driven conformational changes in the reverse gyrase helicase-like domain couple the nucleotide cycle to DNA processing.
    del Toro Duany Y, Klostermeier D.
    Phys Chem Chem Phys; 2011 Jun 07; 13(21):10009-19. PubMed ID: 21350762
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.