These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Derivation of embryonic stem cell line from frozen human embryos and neural differentiation. Tan JC, Li Y, Qu WY, Liu LY, Jiang L, Sun KL. Neuroreport; 2008 Oct 08; 19(15):1451-5. PubMed ID: 18797296 [Abstract] [Full Text] [Related]
3. Expansion of pluripotent human embryonic stem cells on human feeders. Choo AB, Padmanabhan J, Chin AC, Oh SK. Biotechnol Bioeng; 2004 Nov 05; 88(3):321-31. PubMed ID: 15486939 [Abstract] [Full Text] [Related]
7. Derivation, characterization, and differentiation of human embryonic stem cells. Heins N, Englund MC, Sjöblom C, Dahl U, Tonning A, Bergh C, Lindahl A, Hanson C, Semb H. Stem Cells; 2004 Nov 05; 22(3):367-76. PubMed ID: 15153613 [Abstract] [Full Text] [Related]
8. Mouse embryonic stem cell-derived feeder cells support the growth of their own mouse embryonic stem cells. Shi YT, Huang YZ, Tang F, Chu JX. Cell Biol Int; 2006 Dec 05; 30(12):1041-7. PubMed ID: 17074515 [Abstract] [Full Text] [Related]
9. FGF2 secreting human fibroblast feeder cells: a novel culture system for human embryonic stem cells. Saxena S, Hanwate M, Deb K, Sharma V, Totey S. Mol Reprod Dev; 2008 Oct 05; 75(10):1523-32. PubMed ID: 18318041 [Abstract] [Full Text] [Related]
11. In vitro neural differentiation of human embryonic stem cells using a low-density mouse embryonic fibroblast feeder protocol. Ozolek JA, Jane EP, Esplen JE, Petrosko P, Wehn AK, Erb TM, Mucko SE, Cote LC, Sammak PJ. Methods Mol Biol; 2010 Oct 05; 584():71-95. PubMed ID: 19907972 [Abstract] [Full Text] [Related]
12. Characterization and in vitro differentiation potential of a new human embryonic stem cell line, ReliCellhES1. Mandal A, Tipnis S, Pal R, Ravindran G, Bose B, Patki A, Rao MS, Khanna A. Differentiation; 2006 Mar 05; 74(2-3):81-90. PubMed ID: 16533307 [Abstract] [Full Text] [Related]
13. Clonal derivation and characterization of human embryonic stem cell lines. Heins N, Lindahl A, Karlsson U, Rehnström M, Caisander G, Emanuelsson K, Hanson C, Semb H, Björquist P, Sartipy P, Hyllner J. J Biotechnol; 2006 Apr 20; 122(4):511-20. PubMed ID: 16324761 [Abstract] [Full Text] [Related]
15. Comparative study of mouse and human feeder cells for human embryonic stem cells. Eiselleova L, Peterkova I, Neradil J, Slaninova I, Hampl A, Dvorak P. Int J Dev Biol; 2008 Apr 20; 52(4):353-63. PubMed ID: 18415935 [Abstract] [Full Text] [Related]
16. Establishment of human embryonic stem cell lines from frozen-thawed blastocysts using STO cell feeder layers. Park SP, Lee YJ, Lee KS, Ah Shin H, Cho HY, Chung KS, Kim EY, Lim JH. Hum Reprod; 2004 Mar 20; 19(3):676-84. PubMed ID: 14998970 [Abstract] [Full Text] [Related]
17. Derivation of cat embryonic stem-like cells from in vitro-produced blastocysts on homologous and heterologous feeder cells. Gómez MC, Serrano MA, Pope CE, Jenkins JA, Biancardi MN, López M, Dumas C, Galiguis J, Dresser BL. Theriogenology; 2010 Sep 01; 74(4):498-515. PubMed ID: 20708127 [Abstract] [Full Text] [Related]
19. Immortalized feeders for the scale-up of human embryonic stem cells in feeder and feeder-free conditions. Choo A, Padmanabhan J, Chin A, Fong WJ, Oh SK. J Biotechnol; 2006 Mar 09; 122(1):130-41. PubMed ID: 16233925 [Abstract] [Full Text] [Related]