These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 15791935

  • 1. Parallel reactor systems for bioprocess development.
    Weuster-Botz D.
    Adv Biochem Eng Biotechnol; 2005; 92():125-43. PubMed ID: 15791935
    [Abstract] [Full Text] [Related]

  • 2. Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD).
    Puskeiler R, Kaufmann K, Weuster-Botz D.
    Biotechnol Bioeng; 2005 Mar 05; 89(5):512-23. PubMed ID: 15669089
    [Abstract] [Full Text] [Related]

  • 3. Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli.
    Puskeiler R, Kusterer A, John GT, Weuster-Botz D.
    Biotechnol Appl Biochem; 2005 Dec 05; 42(Pt 3):227-35. PubMed ID: 15853771
    [Abstract] [Full Text] [Related]

  • 4. Process performance of parallel bioreactors for batch cultivation of Streptomyces tendae.
    Hortsch R, Krispin H, Weuster-Botz D.
    Bioprocess Biosyst Eng; 2011 Mar 05; 34(3):297-304. PubMed ID: 20931236
    [Abstract] [Full Text] [Related]

  • 5. Microbioreactor Systems for Accelerated Bioprocess Development.
    Hemmerich J, Noack S, Wiechert W, Oldiges M.
    Biotechnol J; 2018 Apr 05; 13(4):e1700141. PubMed ID: 29283217
    [Abstract] [Full Text] [Related]

  • 6. Automated multi-scale cascade of parallel stirred-tank bioreactors for fast protein expression studies.
    Von den Eichen N, Bromig L, Sidarava V, Marienberg H, Weuster-Botz D.
    J Biotechnol; 2021 May 20; 332():103-113. PubMed ID: 33845064
    [Abstract] [Full Text] [Related]

  • 7. Validation of the transferability of membrane-based fed-batch shake flask cultivations to stirred-tank reactor using three different protease producing Bacillus strains.
    Müller J, Hütterott A, Habicher T, Mußmann N, Büchs J.
    J Biosci Bioeng; 2019 Nov 20; 128(5):599-605. PubMed ID: 31151898
    [Abstract] [Full Text] [Related]

  • 8. Fully automated single-use stirred-tank bioreactors for parallel microbial cultivations.
    Kusterer A, Krause C, Kaufmann K, Arnold M, Weuster-Botz D.
    Bioprocess Biosyst Eng; 2008 Apr 20; 31(3):207-15. PubMed ID: 18193293
    [Abstract] [Full Text] [Related]

  • 9. Systematic evaluation of characteristics of the membrane-based fed-batch shake flask.
    Philip P, Meier K, Kern D, Goldmanns J, Stockmeier F, Bähr C, Büchs J.
    Microb Cell Fact; 2017 Jul 17; 16(1):122. PubMed ID: 28716035
    [Abstract] [Full Text] [Related]

  • 10. New milliliter-scale stirred tank bioreactors for the cultivation of mycelium forming microorganisms.
    Hortsch R, Stratmann A, Weuster-Botz D.
    Biotechnol Bioeng; 2010 Jun 15; 106(3):443-51. PubMed ID: 20198653
    [Abstract] [Full Text] [Related]

  • 11. Using a Parallel Micro-Cultivation System (Micro-Matrix) as a Process Development Tool for Cell Culture Applications.
    Wiegmann V, Martinez CB, Baganz F.
    Methods Mol Biol; 2020 Jun 15; 2095():69-81. PubMed ID: 31858463
    [Abstract] [Full Text] [Related]

  • 12. A new microfluidic concept for parallel operated milliliter-scale stirred tank bioreactors.
    Gebhardt G, Hortsch R, Kaufmann K, Arnold M, Weuster-Botz D.
    Biotechnol Prog; 2011 Jun 15; 27(3):684-90. PubMed ID: 21523927
    [Abstract] [Full Text] [Related]

  • 13. High throughput in biotechnology: from shake-flasks to fully instrumented microfermentors.
    Marques MP, Cabral JM, Fernandes P.
    Recent Pat Biotechnol; 2009 Jun 15; 3(2):124-40. PubMed ID: 19519568
    [Abstract] [Full Text] [Related]

  • 14. A novel milliliter-scale chemostat system for parallel cultivation of microorganisms in stirred-tank bioreactors.
    Schmideder A, Severin TS, Cremer JH, Weuster-Botz D.
    J Biotechnol; 2015 Sep 20; 210():19-24. PubMed ID: 26116137
    [Abstract] [Full Text] [Related]

  • 15. Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology.
    Eibl R, Kaiser S, Lombriser R, Eibl D.
    Appl Microbiol Biotechnol; 2010 Mar 20; 86(1):41-9. PubMed ID: 20094714
    [Abstract] [Full Text] [Related]

  • 16. High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor.
    Glazyrina J, Materne EM, Dreher T, Storm D, Junne S, Adams T, Greller G, Neubauer P.
    Microb Cell Fact; 2010 May 30; 9():42. PubMed ID: 20509968
    [Abstract] [Full Text] [Related]

  • 17. Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations.
    Kensy F, Engelbrecht C, Büchs J.
    Microb Cell Fact; 2009 Dec 22; 8():68. PubMed ID: 20028556
    [Abstract] [Full Text] [Related]

  • 18. New miniature stirred-tank bioreactors for parallel study of enzymatic biomass hydrolysis.
    Riedlberger P, Weuster-Botz D.
    Bioresour Technol; 2012 Feb 22; 106():138-46. PubMed ID: 22206921
    [Abstract] [Full Text] [Related]

  • 19. Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale.
    Zhang X, Stettler M, De Sanctis D, Perrone M, Parolini N, Discacciati M, De Jesus M, Hacker D, Quarteroni A, Wurm F.
    Adv Biochem Eng Biotechnol; 2009 Feb 22; 115():33-53. PubMed ID: 19499209
    [Abstract] [Full Text] [Related]

  • 20. Production of the biopesticide azadirachtin by hairy root cultivation of Azadirachta indica in liquid-phase bioreactors.
    Srivastava S, Srivastava AK.
    Appl Biochem Biotechnol; 2013 Nov 22; 171(6):1351-61. PubMed ID: 23955295
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.