These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


342 related items for PubMed ID: 15793103

  • 21. Azole resistance in a Candida albicans mutant lacking the ABC transporter CDR6/ROA1 depends on TOR signaling.
    Khandelwal NK, Chauhan N, Sarkar P, Esquivel BD, Coccetti P, Singh A, Coste AT, Gupta M, Sanglard D, White TC, Chauvel M, d'Enfert C, Chattopadhyay A, Gaur NA, Mondal AK, Prasad R.
    J Biol Chem; 2018 Jan 12; 293(2):412-432. PubMed ID: 29158264
    [Abstract] [Full Text] [Related]

  • 22. A Combination Fluorescence Assay Demonstrates Increased Efflux Pump Activity as a Resistance Mechanism in Azole-Resistant Vaginal Candida albicans Isolates.
    Bhattacharya S, Sobel JD, White TC.
    Antimicrob Agents Chemother; 2016 Oct 12; 60(10):5858-66. PubMed ID: 27431223
    [Abstract] [Full Text] [Related]

  • 23. Resistance in human pathogenic yeasts and filamentous fungi: prevalence, underlying molecular mechanisms and link to the use of antifungals in humans and the environment.
    Jensen RH.
    Dan Med J; 2016 Oct 12; 63(10):. PubMed ID: 27697142
    [Abstract] [Full Text] [Related]

  • 24. Longitudinal genotyping of Candida dubliniensis isolates reveals strain maintenance, microevolution, and the emergence of itraconazole resistance.
    Fleischhacker M, Pasligh J, Moran G, Ruhnke M.
    J Clin Microbiol; 2010 May 12; 48(5):1643-50. PubMed ID: 20200288
    [Abstract] [Full Text] [Related]

  • 25. Clinical azole cross-resistance in Candida parapsilosis is related to a novel MRR1 gain-of-function mutation.
    Branco J, Ryan AP, Pinto E Silva A, Butler G, Miranda IM, Rodrigues AG.
    Clin Microbiol Infect; 2022 Dec 12; 28(12):1655.e5-1655.e8. PubMed ID: 36028086
    [Abstract] [Full Text] [Related]

  • 26. A multicentre study of antifungal susceptibility patterns among 350 Candida auris isolates (2009-17) in India: role of the ERG11 and FKS1 genes in azole and echinocandin resistance.
    Chowdhary A, Prakash A, Sharma C, Kordalewska M, Kumar A, Sarma S, Tarai B, Singh A, Upadhyaya G, Upadhyay S, Yadav P, Singh PK, Khillan V, Sachdeva N, Perlin DS, Meis JF.
    J Antimicrob Chemother; 2018 Apr 01; 73(4):891-899. PubMed ID: 29325167
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28. Molecular mechanisms of itraconazole resistance in Candida dubliniensis.
    Pinjon E, Moran GP, Jackson CJ, Kelly SL, Sanglard D, Coleman DC, Sullivan DJ.
    Antimicrob Agents Chemother; 2003 Aug 01; 47(8):2424-37. PubMed ID: 12878500
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Role of ATP-binding-cassette transporter genes in high-frequency acquisition of resistance to azole antifungals in Candida glabrata.
    Sanglard D, Ischer F, Bille J.
    Antimicrob Agents Chemother; 2001 Apr 01; 45(4):1174-83. PubMed ID: 11257032
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Vulvovaginal candidiasis: species distribution, fluconazole resistance and drug efflux pump gene overexpression.
    Zhang JY, Liu JH, Liu FD, Xia YH, Wang J, Liu X, Zhang ZQ, Zhu N, Yan-Yan, Ying Y, Huang XT.
    Mycoses; 2014 Oct 01; 57(10):584-91. PubMed ID: 24962255
    [Abstract] [Full Text] [Related]

  • 33. Mechanisms of resistance to fluconazole in Candida albicans clinical isolates from Iranian HIV-infected patients with oropharyngeal candidiasis.
    Salari S, Khosravi AR, Mousavi SA, Nikbakht-Brojeni GH.
    J Mycol Med; 2016 Mar 01; 26(1):35-41. PubMed ID: 26627124
    [Abstract] [Full Text] [Related]

  • 34. A Transcriptomics Approach To Unveiling the Mechanisms of In Vitro Evolution towards Fluconazole Resistance of a Candida glabrata Clinical Isolate.
    Cavalheiro M, Costa C, Silva-Dias A, Miranda IM, Wang C, Pais P, Pinto SN, Mil-Homens D, Sato-Okamoto M, Takahashi-Nakaguchi A, Silva RM, Mira NP, Fialho AM, Chibana H, Rodrigues AG, Butler G, Teixeira MC.
    Antimicrob Agents Chemother; 2019 Jan 01; 63(1):. PubMed ID: 30348666
    [Abstract] [Full Text] [Related]

  • 35. Phenotypic and genotypic evaluation of fluconazole resistance in vaginal Candida strains isolated from HIV-infected women from Brazil.
    Ribeiro MA, Paula CR, John R, Perfect JR, Cox GM.
    Med Mycol; 2005 Nov 01; 43(7):647-50. PubMed ID: 16396250
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Expression Patterns of ABC Transporter Genes in Fluconazole-Resistant Candida glabrata.
    Gohar AA, Badali H, Shokohi T, Nabili M, Amirrajab N, Moazeni M.
    Mycopathologia; 2017 Apr 01; 182(3-4):273-284. PubMed ID: 27744635
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Microarray and molecular analyses of the azole resistance mechanism in Candida glabrata oropharyngeal isolates.
    Tsai HF, Sammons LR, Zhang X, Suffis SD, Su Q, Myers TG, Marr KA, Bennett JE.
    Antimicrob Agents Chemother; 2010 Aug 01; 54(8):3308-17. PubMed ID: 20547810
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.