These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
424 related items for PubMed ID: 15794653
1. Metal-binding characteristics of the amino-terminal domain of ZntA: binding of lead is different compared to cadmium and zinc. Liu J, Stemmler AJ, Fatima J, Mitra B. Biochemistry; 2005 Apr 05; 44(13):5159-67. PubMed ID: 15794653 [Abstract] [Full Text] [Related]
2. Kinetic analysis of metal binding to the amino-terminal domain of ZntA by monitoring metal-thiolate charge-transfer complexes. Dutta SJ, Liu J, Mitra B. Biochemistry; 2005 Nov 01; 44(43):14268-74. PubMed ID: 16245943 [Abstract] [Full Text] [Related]
3. The cysteine-rich amino-terminal domain of ZntA, a Pb(II)/Zn(II)/Cd(II)-translocating ATPase from Escherichia coli, is not essential for its function. Mitra B, Sharma R. Biochemistry; 2001 Jun 26; 40(25):7694-9. PubMed ID: 11412123 [Abstract] [Full Text] [Related]
4. Metal-binding affinity of the transmembrane site in ZntA: implications for metal selectivity. Liu J, Dutta SJ, Stemmler AJ, Mitra B. Biochemistry; 2006 Jan 24; 45(3):763-72. PubMed ID: 16411752 [Abstract] [Full Text] [Related]
5. A zinc(II)/lead(II)/cadmium(II)-inducible operon from the Cyanobacterium anabaena is regulated by AztR, an alpha3N ArsR/SmtB metalloregulator. Liu T, Golden JW, Giedroc DP. Biochemistry; 2005 Jun 21; 44(24):8673-83. PubMed ID: 15952774 [Abstract] [Full Text] [Related]
6. Conserved aspartic acid 714 in transmembrane segment 8 of the ZntA subgroup of P1B-type ATPases is a metal-binding residue. Dutta SJ, Liu J, Hou Z, Mitra B. Biochemistry; 2006 May 09; 45(18):5923-31. PubMed ID: 16669635 [Abstract] [Full Text] [Related]
7. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains. Zimmermann M, Clarke O, Gulbis JM, Keizer DW, Jarvis RS, Cobbett CS, Hinds MG, Xiao Z, Wedd AG. Biochemistry; 2009 Dec 15; 48(49):11640-54. PubMed ID: 19883117 [Abstract] [Full Text] [Related]
8. Conservative and nonconservative mutations of the transmembrane CPC motif in ZntA: effect on metal selectivity and activity. Dutta SJ, Liu J, Stemmler AJ, Mitra B. Biochemistry; 2007 Mar 27; 46(12):3692-703. PubMed ID: 17326661 [Abstract] [Full Text] [Related]
9. The metal specificity and selectivity of ZntA from Escherichia coli using the acylphosphate intermediate. Hou Z, Mitra B. J Biol Chem; 2003 Aug 01; 278(31):28455-61. PubMed ID: 12746428 [Abstract] [Full Text] [Related]
10. Elucidation of primary (alpha(3)N) and vestigial (alpha(5)) heavy metal-binding sites in Staphylococcus aureus pI258 CadC: evolutionary implications for metal ion selectivity of ArsR/SmtB metal sensor proteins. Busenlehner LS, Weng TC, Penner-Hahn JE, Giedroc DP. J Mol Biol; 2002 Jun 07; 319(3):685-701. PubMed ID: 12054863 [Abstract] [Full Text] [Related]
11. The nucleotide-binding domain of the Zn2+-transporting P-type ATPase from Escherichia coli carries a glycine motif that may be involved in binding of ATP. Okkeri J, Laakkonen L, Haltia T. Biochem J; 2004 Jan 01; 377(Pt 1):95-105. PubMed ID: 14510639 [Abstract] [Full Text] [Related]
12. Functional analysis of chimeric proteins of the Wilson Cu(I)-ATPase (ATP7B) and ZntA, a Pb(II)/Zn(II)/Cd(II)-ATPase from Escherichia coli. Hou ZJ, Narindrasorasak S, Bhushan B, Sarkar B, Mitra B. J Biol Chem; 2001 Nov 02; 276(44):40858-63. PubMed ID: 11527979 [Abstract] [Full Text] [Related]
13. Expression of ZntA, a zinc-transporting P1-type ATPase, is specifically regulated by zinc and cadmium. Noll M, Lutsenko S. IUBMB Life; 2000 Apr 02; 49(4):297-302. PubMed ID: 10995032 [Abstract] [Full Text] [Related]
14. A new zinc-protein coordination site in intracellular metal trafficking: solution structure of the Apo and Zn(II) forms of ZntA(46-118). Banci L, Bertini I, Ciofi-Baffoni S, Finney LA, Outten CE, O'Halloran TV. J Mol Biol; 2002 Nov 08; 323(5):883-97. PubMed ID: 12417201 [Abstract] [Full Text] [Related]
15. Identification of the Zn(II) site in the copper-responsive yeast transcription factor, AMT1: a conserved Zn module. Farrell RA, Thorvaldsen JL, Winge DR. Biochemistry; 1996 Feb 06; 35(5):1571-80. PubMed ID: 8634288 [Abstract] [Full Text] [Related]
16. The ATP hydrolytic activity of purified ZntA, a Pb(II)/Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. Sharma R, Rensing C, Rosen BP, Mitra B. J Biol Chem; 2000 Feb 11; 275(6):3873-8. PubMed ID: 10660539 [Abstract] [Full Text] [Related]
17. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals. Rangachari V, Marin V, Bienkiewicz EA, Semavina M, Guerrero L, Love JF, Murphy JR, Logan TM. Biochemistry; 2005 Apr 19; 44(15):5672-82. PubMed ID: 15823025 [Abstract] [Full Text] [Related]
18. Novel Zn2+ coordination by the regulatory N-terminus metal binding domain of Arabidopsis thaliana Zn(2+)-ATPase HMA2. Eren E, González-Guerrero M, Kaufman BM, Argüello JM. Biochemistry; 2007 Jul 03; 46(26):7754-64. PubMed ID: 17550234 [Abstract] [Full Text] [Related]
19. The Zn(II) binding motifs of E. coli DNA topoisomerase I is part of a high-affinity DNA binding domain. Ahumada A, Tse-Dinh YC. Biochem Biophys Res Commun; 1998 Oct 20; 251(2):509-14. PubMed ID: 9792804 [Abstract] [Full Text] [Related]
20. Metal- and DNA-binding properties and mutational analysis of the transcription activating factor, B, of coliphage 186: a prokaryotic C4 zinc-finger protein. Pountney DL, Tiwari RP, Egan JB. Protein Sci; 1997 Apr 20; 6(4):892-902. PubMed ID: 9098899 [Abstract] [Full Text] [Related] Page: [Next] [New Search]