These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


189 related items for PubMed ID: 15797326

  • 1. Immuno-capture of Cryptosporidium parvum using micro-well array.
    Taguchi T, Takeyama H, Matsunaga T.
    Biosens Bioelectron; 2005 May 15; 20(11):2276-82. PubMed ID: 15797326
    [Abstract] [Full Text] [Related]

  • 2. Detection of Cryptosporidium parvum oocysts using a microfluidic device equipped with the SUS micromesh and FITC-labeled antibody.
    Taguchi T, Arakaki A, Takeyama H, Haraguchi S, Yoshino M, Kaneko M, Ishimori Y, Matsunaga T.
    Biotechnol Bioeng; 2007 Feb 01; 96(2):272-80. PubMed ID: 16917954
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Characterization and potential use of a Cryptosporidium parvum virus (CPV) antigen for detecting C. parvum oocysts.
    Kniel KE, Higgins JA, Trout JM, Fayer R, Jenkins MC.
    J Microbiol Methods; 2004 Aug 01; 58(2):189-95. PubMed ID: 15234516
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Non-labeled detection of waterborne pathogen Cryptosporidium parvum using a polydiacetylene-based fluorescence chip.
    Park CK, Kang CD, Sim SJ.
    Biotechnol J; 2008 May 01; 3(5):687-93. PubMed ID: 18381618
    [Abstract] [Full Text] [Related]

  • 11. On-chip micro-biosensor for the detection of human CD4(+) cells based on AC impedance and optical analysis.
    Mishra NN, Retterer S, Zieziulewicz TJ, Isaacson M, Szarowski D, Mousseau DE, Lawrence DA, Turner JN.
    Biosens Bioelectron; 2005 Nov 15; 21(5):696-704. PubMed ID: 16242607
    [Abstract] [Full Text] [Related]

  • 12. Evaluation of Cryptosporidium parvum oocyst recovery efficiencies from various filtration cartridges by electrochemiluminescence assays.
    Lee Y, Gomez LL, McAuliffe IT, Tsang VC.
    Lett Appl Microbiol; 2004 Nov 15; 39(2):156-62. PubMed ID: 15242454
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Near real-time detection of Cryptosporidium parvum oocyst by IgM-functionalized piezoelectric-excited millimeter-sized cantilever biosensor.
    Campbell GA, Mutharasan R.
    Biosens Bioelectron; 2008 Feb 28; 23(7):1039-45. PubMed ID: 18054480
    [Abstract] [Full Text] [Related]

  • 15. Detection of Cryptosporidium parvum in buffer and in complex matrix using PEMC sensors at 5 oocysts mL(-1).
    Xu S, Mutharasan R.
    Anal Chim Acta; 2010 Jun 11; 669(1-2):81-6. PubMed ID: 20510907
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips.
    Leclerc E, El Kirat K, Griscom L.
    Biomed Microdevices; 2008 Apr 11; 10(2):169-77. PubMed ID: 17849187
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.