These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
222 related items for PubMed ID: 15801047
41. Fatty acid profiles of brain phospholipid subclasses of rats fed n - 3 polyunsaturated fatty acids of marine or vegetable origin. A two generation study. Alsted AL, Høy CE. Biochim Biophys Acta; 1992 May 08; 1125(3):237-44. PubMed ID: 1350736 [Abstract] [Full Text] [Related]
44. Comparison of the extrapancreatic action of gamma-linolenic acid and n-3 PUFAs in the high fat diet-induced insulin resistance [corrected]. Simoncíkova P, Wein S, Gasperikova D, Ukropec J, Certik M, Klimes I, Sebokova E. Endocr Regul; 2002 Nov 08; 36(4):143-9. PubMed ID: 12466014 [Abstract] [Full Text] [Related]
45. Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. Okuno M, Kajiwara K, Imai S, Kobayashi T, Honma N, Maki T, Suruga K, Goda T, Takase S, Muto Y, Moriwaki H. J Nutr; 1997 Sep 08; 127(9):1752-7. PubMed ID: 9278555 [Abstract] [Full Text] [Related]
46. NO-1886 inhibits size of adipocytes, suppresses plasma levels of tumor necrosis factor-alpha and free fatty acids, improves glucose metabolism in high-fat/high-sucrose-fed miniature pigs. Yin W, Liao D, Wang Z, Xi S, Tsutsumi K, Koike T, Fan J, Yi G, Zhang Q, Yuan Z, Tang K. Pharmacol Res; 2004 Mar 08; 49(3):199-206. PubMed ID: 14726214 [Abstract] [Full Text] [Related]
47. [Influence of linoleic acid (18:2 n-6) and alpha-linolenic acid (18:3 n-3) on the composition, permeability and fluidity of cardiac phospholipids in the rat: study using membrane models (liposomes)]. Rocquelin G, Yoyo N, Ducruet JM. Reprod Nutr Dev (1980); 1986 Mar 08; 26(1A):97-112. PubMed ID: 2871601 [Abstract] [Full Text] [Related]
48. Lipogenic enzyme activities and glucose uptake in fat tissue of dyslipemic, insulin-resistant rats: effects of fish oil. Rossi AS, Lombardo YB, Chicco AG. Nutrition; 2010 Feb 08; 26(2):209-17. PubMed ID: 19665871 [Abstract] [Full Text] [Related]
49. Dietary intakes of alpha-linolenic and linoleic acids are inversely associated with serum C-reactive protein levels among Japanese men. Poudel-Tandukar K, Nanri A, Matsushita Y, Sasaki S, Ohta M, Sato M, Mizoue T. Nutr Res; 2009 Jun 08; 29(6):363-70. PubMed ID: 19628101 [Abstract] [Full Text] [Related]
50. Defining high-fat-diet rat models: metabolic and molecular effects of different fat types. Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart LA, Schölmerich J, Bollheimer LC. J Mol Endocrinol; 2006 Jun 08; 36(3):485-501. PubMed ID: 16720718 [Abstract] [Full Text] [Related]
51. Role of fatty acid composition in the development of metabolic disorders in sucrose-induced obese rats. Fukuchi S, Hamaguchi K, Seike M, Himeno K, Sakata T, Yoshimatsu H. Exp Biol Med (Maywood); 2004 Jun 08; 229(6):486-93. PubMed ID: 15169967 [Abstract] [Full Text] [Related]
52. Cardiomyocyte dysfunction in sucrose-fed rats is associated with insulin resistance. Dutta K, Podolin DA, Davidson MB, Davidoff AJ. Diabetes; 2001 May 08; 50(5):1186-92. PubMed ID: 11334425 [Abstract] [Full Text] [Related]
53. Lipolysis and the antilipolytic effect of insulin in adipocytes from rats adapted to a high-protein diet. Kettelhut IC, Foss MC, Migliorini RH. Metabolism; 1985 Jan 08; 34(1):69-73. PubMed ID: 3880858 [Abstract] [Full Text] [Related]
54. Differential effects of n-3 polyunsaturated fatty acids on metabolic control and vascular reactivity in the type 2 diabetic ob/ob mouse. Mustad VA, Demichele S, Huang YS, Mika A, Lubbers N, Berthiaume N, Polakowski J, Zinker B. Metabolism; 2006 Oct 08; 55(10):1365-74. PubMed ID: 16979408 [Abstract] [Full Text] [Related]
55. Dietary n-3 fatty acids affect mRNA level of brown adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose transporter 4 in the rat. Takahashi Y, Ide T. Br J Nutr; 2000 Aug 08; 84(2):175-84. PubMed ID: 11029968 [Abstract] [Full Text] [Related]
56. Differential effects of dietary saturated and trans-fatty acids on expression of genes associated with insulin sensitivity in rat adipose tissue. Saravanan N, Haseeb A, Ehtesham NZ, Ghafoorunissa. Eur J Endocrinol; 2005 Jul 08; 153(1):159-65. PubMed ID: 15998628 [Abstract] [Full Text] [Related]
57. Monounsaturated n-9 fatty acids and adipocyte lipolysis in rats. Soriguer F, Moreno F, Rojo-Martínez G, García-Fuentes E, Tinahones F, Gómez-Zumaquero JM, Cuesta-Muñoz AL, Cardona F, Morcillo S. Br J Nutr; 2003 Dec 08; 90(6):1015-22. PubMed ID: 14641960 [Abstract] [Full Text] [Related]
58. Chronic consumption of trans-fat-rich diet increases hepatic cholesterol levels and impairs muscle insulin sensitivity without leading to hepatic steatosis and hypertriglyceridemia in female Fischer rats. Jeyakumar SM, Prashant A, Rani KS, Laxmi R, Vani A, Kumar PU, Vajreswari A. Ann Nutr Metab; 2011 Oct 08; 58(4):272-80. PubMed ID: 21912103 [Abstract] [Full Text] [Related]
59. Involvement of liver and skeletal muscle in sucrose-induced insulin resistance: dose-response studies. Pagliassotti MJ, Shahrokhi KA, Moscarello M. Am J Physiol; 1994 May 08; 266(5 Pt 2):R1637-44. PubMed ID: 8203644 [Abstract] [Full Text] [Related]
60. Adipocyte metabolism in adipocyte fatty acid binding protein knockout mice (aP2-/-) after short-term high-fat feeding: functional compensation by the keratinocyte [correction of keritinocyte] fatty acid binding protein. Shaughnessy S, Smith ER, Kodukula S, Storch J, Fried SK. Diabetes; 2000 Jun 08; 49(6):904-11. PubMed ID: 10866041 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]