These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. Bilek AM, Dee KC, Gaver DP. J Appl Physiol (1985); 2003 Feb; 94(2):770-83. PubMed ID: 12433851 [Abstract] [Full Text] [Related]
3. An investigation of pulmonary surfactant physicochemical behavior under airway reopening conditions. Ghadiali SN, Gaver DP. J Appl Physiol (1985); 2000 Feb; 88(2):493-506. PubMed ID: 10658016 [Abstract] [Full Text] [Related]
4. Pressure gradient, not exposure duration, determines the extent of epithelial cell damage in a model of pulmonary airway reopening. Kay SS, Bilek AM, Dee KC, Gaver DP. J Appl Physiol (1985); 2004 Jul; 97(1):269-76. PubMed ID: 15004001 [Abstract] [Full Text] [Related]
5. Influence of airway diameter and cell confluence on epithelial cell injury in an in vitro model of airway reopening. Yalcin HC, Perry SF, Ghadiali SN. J Appl Physiol (1985); 2007 Nov; 103(5):1796-807. PubMed ID: 17673567 [Abstract] [Full Text] [Related]
6. The unusual symmetric reopening effect induced by pulmonary surfactant. Yamaguchi E, Giannetti MJ, Van Houten MJ, Forouzan O, Shevkoplyas SS, Gaver DP. J Appl Physiol (1985); 2014 Mar 15; 116(6):635-44. PubMed ID: 24458752 [Abstract] [Full Text] [Related]
7. Effect of surface tension of mucosal lining liquid on upper airway mechanics in anesthetized humans. Kirkness JP, Eastwood PR, Szollosi I, Platt PR, Wheatley JR, Amis TC, Hillman DR. J Appl Physiol (1985); 2003 Jul 15; 95(1):357-63. PubMed ID: 12626492 [Abstract] [Full Text] [Related]
8. Epithelium damage and protection during reopening of occluded airways in a physiologic microfluidic pulmonary airway model. Tavana H, Zamankhan P, Christensen PJ, Grotberg JB, Takayama S. Biomed Microdevices; 2011 Aug 15; 13(4):731-42. PubMed ID: 21487664 [Abstract] [Full Text] [Related]
9. The effect of airway wall motion on surfactant delivery. Halpern D, Bull JL, Grotberg JB. J Biomech Eng; 2004 Aug 15; 126(4):410-9. PubMed ID: 15543858 [Abstract] [Full Text] [Related]
10. Image-based finite element modeling of alveolar epithelial cell injury during airway reopening. Dailey HL, Ricles LM, Yalcin HC, Ghadiali SN. J Appl Physiol (1985); 2009 Jan 15; 106(1):221-32. PubMed ID: 19008489 [Abstract] [Full Text] [Related]
11. Physicochemical effects enhance surfactant transport in pulsatile motion of a semi-infinite bubble. Pillert JE, Gaver DP. Biophys J; 2009 Jan 15; 96(1):312-27. PubMed ID: 18849416 [Abstract] [Full Text] [Related]
12. A model of surfactant-induced surface tension effects on the parenchymal tethering of pulmonary airways. Fujioka H, Halpern D, Gaver DP. J Biomech; 2013 Jan 18; 46(2):319-28. PubMed ID: 23235110 [Abstract] [Full Text] [Related]
13. Biomechanics of liquid-epithelium interactions in pulmonary airways. Ghadiali SN, Gaver DP. Respir Physiol Neurobiol; 2008 Nov 30; 163(1-3):232-43. PubMed ID: 18511356 [Abstract] [Full Text] [Related]
14. The influence of surfactant on the propagation of a semi-infinite bubble through a liquid-filled compliant channel. Halpern D, Gaver DP. J Fluid Mech; 2012 May 01; 698():125-159. PubMed ID: 22997476 [Abstract] [Full Text] [Related]
15. Influence of power-law rheology on cell injury during microbubble flows. Dailey HL, Ghadiali SN. Biomech Model Mechanobiol; 2010 Jun 01; 9(3):263-79. PubMed ID: 19865840 [Abstract] [Full Text] [Related]
16. The mechanics of airway closure. Heil M, Hazel AL, Smith JA. Respir Physiol Neurobiol; 2008 Nov 30; 163(1-3):214-21. PubMed ID: 18595784 [Abstract] [Full Text] [Related]
17. Mechanics of airway and alveolar collapse in human breath-hold diving. Fitz-Clarke JR. Respir Physiol Neurobiol; 2007 Nov 15; 159(2):202-10. PubMed ID: 17827075 [Abstract] [Full Text] [Related]
18. An asymptotic model of unsteady airway reopening. Naire S, Jensen OE. J Biomech Eng; 2003 Dec 15; 125(6):823-31. PubMed ID: 14986407 [Abstract] [Full Text] [Related]
19. Thin layer flows due to surface tension gradients over a membrane undergoing nonuniform, periodic strain. Espinosa FF, Kamm RD. Ann Biomed Eng; 1997 Dec 15; 25(6):913-25. PubMed ID: 9395038 [Abstract] [Full Text] [Related]
20. [The mucociliary system of the lung--role of surfactants]. Gehr P, Im Hof V, Geiser M, Schürch S. Schweiz Med Wochenschr; 2000 May 13; 130(19):691-8. PubMed ID: 10846763 [Abstract] [Full Text] [Related] Page: [Next] [New Search]