These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
145 related items for PubMed ID: 15803648
1. Reverse micelles in organic solvents: a medium for the biotechnological use of extreme halophilic enzymes at low salt concentration. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E. Archaea; 2002 Sep; 1(2):105-11. PubMed ID: 15803648 [Abstract] [Full Text] [Related]
2. An extreme halophilic enzyme active at low salt in reversed micelles. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E. J Biotechnol; 2002 Feb 14; 93(2):159-64. PubMed ID: 11738722 [Abstract] [Full Text] [Related]
3. Stability of an extreme halophilic alkaline phosphatase from Halobacterium salinarium in non-conventional medium. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E. J Biotechnol; 2001 May 18; 87(3):255-61. PubMed ID: 11334667 [Abstract] [Full Text] [Related]
4. Increased stability of malate dehydrogenase from Halobacterium salinarum at low salt concentration in reverse micelles. Piera-Velázquez S, Marhuenda-Egea F, Cadenas E. Extremophiles; 2002 Oct 18; 6(5):407-12. PubMed ID: 12382117 [Abstract] [Full Text] [Related]
5. Kinetic regulation of an alkaline p-nitrophenylphosphate phosphatase from Halobacterium salinarum in low water system by Mn2+ and monovalent cations. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E. FEMS Microbiol Lett; 2001 May 01; 198(2):111-5. PubMed ID: 11430399 [Abstract] [Full Text] [Related]
6. Mechanism of adaptation of an atypical alkaline p-nitrophenyl phosphatase from the archaeon Halobacterium salinarum at low-water environments. Marhuenda-Egea FC, Piera-Velázquez S, Cadenas C, Cadenas E. Biotechnol Bioeng; 2002 Jun 05; 78(5):497-502. PubMed ID: 12115118 [Abstract] [Full Text] [Related]
7. Overexpression in a non-native halophilic host and biotechnological potential of NAD+-dependent glutamate dehydrogenase from Halobacterium salinarum strain NRC-36014. Munawar N, Engel PC. Extremophiles; 2012 May 05; 16(3):463-76. PubMed ID: 22527040 [Abstract] [Full Text] [Related]
8. Alkaline p-nitrophenylphosphate phosphatase activity from Halobacterium halobium. Selective activation by manganese and effect of other divalent cations. Bonet ML, Llorca FI, Cadenas E. Int J Biochem; 1992 May 05; 24(5):839-45. PubMed ID: 1317306 [Abstract] [Full Text] [Related]
9. Involvement of thiol groups in the reaction mechanism of Mn(2+)-activated alkaline p-nitrophenylphosphate phosphatase of the extreme halophilic archaebacterium Halobacterium halobium. Bonet ML, Llorca FI, Cadenas E. Biochem Int; 1992 Dec 05; 28(4):633-41. PubMed ID: 1336386 [Abstract] [Full Text] [Related]
10. Molecular adaptation and salt stress response of Halobacterium salinarum cells revealed by neutron spectroscopy. Vauclare P, Marty V, Fabiani E, Martinez N, Jasnin M, Gabel F, Peters J, Zaccai G, Franzetti B. Extremophiles; 2015 Nov 05; 19(6):1099-107. PubMed ID: 26376634 [Abstract] [Full Text] [Related]
11. Structural and biochemical characterization of a halophilic archaeal alkaline phosphatase. Wende A, Johansson P, Vollrath R, Dyall-Smith M, Oesterhelt D, Grininger M. J Mol Biol; 2010 Jul 02; 400(1):52-62. PubMed ID: 20438737 [Abstract] [Full Text] [Related]
12. Kinetic mechanism of Halobacterium halobium Mn(2+)-activated alkaline phosphatase. Bonet ML, Llorca FI, Cadenas E. Biochem Mol Biol Int; 1994 Dec 02; 34(6):1109-20. PubMed ID: 7696983 [Abstract] [Full Text] [Related]
13. Stabilization of halophilic malate dehydrogenase. Zaccai G, Cendrin F, Haik Y, Borochov N, Eisenberg H. J Mol Biol; 1989 Aug 05; 208(3):491-500. PubMed ID: 2795658 [Abstract] [Full Text] [Related]
14. Structure of a halophilic nucleoside diphosphate kinase from Halobacterium salinarum. Besir H, Zeth K, Bracher A, Heider U, Ishibashi M, Tokunaga M, Oesterhelt D. FEBS Lett; 2005 Dec 05; 579(29):6595-600. PubMed ID: 16293253 [Abstract] [Full Text] [Related]
15. The principles of enzyme stabilization. VI. Catalysis by water-soluble enzymes entrapped into reversed micelles of surfactants in organic solvents. Martinek K, Levashov AV, Klyachko NL, Pantin VI, Berezin IV. Biochim Biophys Acta; 1981 Jan 15; 657(1):277-94. PubMed ID: 7213747 [Abstract] [Full Text] [Related]
16. Catalytic and thermodynamic characterization of protease from Halobacterium sp. SP1(1). Akolkar AV, Desai AJ. Res Microbiol; 2010 Jun 15; 161(5):355-62. PubMed ID: 20438836 [Abstract] [Full Text] [Related]
17. Enzyme catalysis in reverse micelles. Orlich B, Schomäcker R. Adv Biochem Eng Biotechnol; 2002 Jun 15; 75():185-208. PubMed ID: 11783840 [Abstract] [Full Text] [Related]
18. NaCl-activated nucleoside diphosphate kinase from extremely halophilic archaeon, Halobacterium salinarum, maintains native conformation without salt. Ishibashi M, Tokunaga H, Hiratsuka K, Yonezawa Y, Tsurumaru H, Arakawa T, Tokunaga M. FEBS Lett; 2001 Mar 30; 493(2-3):134-8. PubMed ID: 11287010 [Abstract] [Full Text] [Related]
19. Catalytic properties and potential of an extracellular protease from an extreme halophile. Ryu K, Kim J, Dordick JS. Enzyme Microb Technol; 1994 Apr 30; 16(4):266-75. PubMed ID: 7764632 [Abstract] [Full Text] [Related]
20. Halophile aldehyde dehydrogenase from Halobacterium salinarum. Kim HJ, Joo WA, Cho CW, Kim CW. J Proteome Res; 2006 Jan 30; 5(1):192-5. PubMed ID: 16396511 [Abstract] [Full Text] [Related] Page: [Next] [New Search]