These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 15804714

  • 1. Activity of commercial enzymes on settlement and adhesion of cypris larvae of the barnacle Balanus amphitrite, spores of the green alga Ulva linza, and the diatom Navicula perminuta.
    Pettitt ME, Henry SL, Callow ME, Callow JA, Clare AS.
    Biofouling; 2004 Dec; 20(6):299-311. PubMed ID: 15804714
    [Abstract] [Full Text] [Related]

  • 2. Algal antifouling and fouling-release properties of metal surfaces coated with a polymer inspired by marine mussels.
    Statz A, Finlay J, Dalsin J, Callow M, Callow JA, Messersmith PB.
    Biofouling; 2006 Dec; 22(5-6):391-9. PubMed ID: 17178572
    [Abstract] [Full Text] [Related]

  • 3. Antifouling potential of Subtilisin A immobilized onto maleic anhydride copolymer thin films.
    Tasso M, Pettitt ME, Cordeiro AL, Callow ME, Callow JA, Werner C.
    Biofouling; 2009 Dec; 25(6):505-16. PubMed ID: 19387876
    [Abstract] [Full Text] [Related]

  • 4. Barnacle settlement and the adhesion of protein and diatom microfouling to xerogel films with varying surface energy and water wettability.
    Finlay JA, Bennett SM, Brewer LH, Sokolova A, Clay G, Gunari N, Meyer AE, Walker GC, Wendt DE, Callow ME, Callow JA, Detty MR.
    Biofouling; 2010 Aug; 26(6):657-66. PubMed ID: 20645195
    [Abstract] [Full Text] [Related]

  • 5. The effects of a serine protease, Alcalase, on the adhesives of barnacle cyprids (Balanus amphitrite).
    Aldred N, Phang IY, Conlan SL, Clare AS, Vancso GJ.
    Biofouling; 2008 Aug; 24(2):97-107. PubMed ID: 18231899
    [Abstract] [Full Text] [Related]

  • 6. Effect of bacterial biofilms formed on fouling-release coatings from natural seawater and Cobetia marina, on the adhesion of two marine algae.
    Mieszkin S, Martin-Tanchereau P, Callow ME, Callow JA.
    Biofouling; 2012 Aug; 28(9):953-68. PubMed ID: 23004017
    [Abstract] [Full Text] [Related]

  • 7. Charged hydrophilic polymer brushes and their relevance for understanding marine biofouling.
    Yandi W, Mieszkin S, di Fino A, Martin-Tanchereau P, Callow ME, Callow JA, Tyson L, Clare AS, Ederth T.
    Biofouling; 2016 Jul; 32(6):609-25. PubMed ID: 27125564
    [Abstract] [Full Text] [Related]

  • 8. Comparison of the fouling release properties of hydrophobic fluorinated and hydrophilic PEGylated block copolymer surfaces: attachment strength of the diatom Navicula and the green alga Ulva.
    Krishnan S, Wang N, Ober CK, Finlay JA, Callow ME, Callow JA, Hexemer A, Sohn KE, Kramer EJ, Fischer DA.
    Biomacromolecules; 2006 May; 7(5):1449-62. PubMed ID: 16677026
    [Abstract] [Full Text] [Related]

  • 9. Slippery liquid-infused porous surfaces showing marine antibiofouling properties.
    Xiao L, Li J, Mieszkin S, Di Fino A, Clare AS, Callow ME, Callow JA, Grunze M, Rosenhahn A, Levkin PA.
    ACS Appl Mater Interfaces; 2013 Oct 23; 5(20):10074-80. PubMed ID: 24067279
    [Abstract] [Full Text] [Related]

  • 10. Species-specific engineered antifouling topographies: correlations between the settlement of algal zoospores and barnacle cyprids.
    Schumacher JF, Aldred N, Callow ME, Finlay JA, Callow JA, Clare AS, Brennan AB.
    Biofouling; 2007 Oct 23; 23(5-6):307-17. PubMed ID: 17852066
    [Abstract] [Full Text] [Related]

  • 11. The role of nano-roughness in antifouling.
    Scardino AJ, Zhang H, Cookson DJ, Lamb RN, de Nys R.
    Biofouling; 2009 Nov 23; 25(8):757-67. PubMed ID: 20183134
    [Abstract] [Full Text] [Related]

  • 12. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments.
    Ekblad T, Bergström G, Ederth T, Conlan SL, Mutton R, Clare AS, Wang S, Liu Y, Zhao Q, D'Souza F, Donnelly GT, Willemsen PR, Pettitt ME, Callow ME, Callow JA, Liedberg B.
    Biomacromolecules; 2008 Oct 23; 9(10):2775-83. PubMed ID: 18759475
    [Abstract] [Full Text] [Related]

  • 13. Inhibition of common fouling organisms by marine bacterial isolates ith special reference to the role of pigmented bacteria.
    Holmström C, James S, Egan S, Kjelleberg S.
    Biofouling; 1996 Oct 23; 10(1-3):251-9. PubMed ID: 22115116
    [Abstract] [Full Text] [Related]

  • 14. Interactions of zoospores of Ulva linza with arginine-rich oligopeptide monolayers.
    Ederth T, Pettitt ME, Nygren P, Du CX, Ekblad T, Zhou Y, Falk M, Callow ME, Callow JA, Liedberg B.
    Langmuir; 2009 Aug 18; 25(16):9375-83. PubMed ID: 19719228
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Adrenoceptor compounds prevent the settlement of marine invertebrate larvae: Balanus amphitrite (Cirripedia), Bugula neritina (Bryozoa) and Hydroides elegans (Polychaeta).
    Dahms HU, Jin T, Qian PY.
    Biofouling; 2004 Dec 18; 20(6):313-21. PubMed ID: 15804715
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.