These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


122 related items for PubMed ID: 15805124

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Nitric oxide production induced in roots of Lotus japonicus by lipopolysaccharide from Mesorhizobium loti.
    Murakami E, Nagata M, Shimoda Y, Kucho K, Higashi S, Abe M, Hashimoto M, Uchiumi T.
    Plant Cell Physiol; 2011 Apr; 52(4):610-7. PubMed ID: 21330297
    [Abstract] [Full Text] [Related]

  • 23. Requirement for Mesorhizobium loti ornithine transcarbamoylase for successful symbiosis with Lotus japonicus as revealed by an unexpected long-range genome deletion.
    Mishima E, Hosokawa A, Imaizumi-Anraku H, Saito K, Kawaguchi M, Saeki K.
    Plant Cell Physiol; 2008 Mar; 49(3):301-13. PubMed ID: 18184692
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Nodule development induced by Mesorhizobium loti mutant strains affected in polysaccharide synthesis.
    D'Antuono AL, Casabuono A, Couto A, Ugalde RA, Lepek VC.
    Mol Plant Microbe Interact; 2005 May; 18(5):446-57. PubMed ID: 15915643
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Structural identification of the lipo-chitin oligosaccharide nodulation signals of Rhizobium loti.
    López-Lara IM, van den Berg JD, Thomas-Oates JE, Glushka J, Lugtenberg BJ, Spaink HP.
    Mol Microbiol; 1995 Feb; 15(4):627-38. PubMed ID: 7783635
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Growth and Survival of Mesorhizobium loti Inside Acanthamoeba Enhanced Its Ability to Develop More Nodules on Lotus corniculatus.
    Karaś MA, Turska-Szewczuk A, Trapska D, Urbanik-Sypniewska T.
    Microb Ecol; 2015 Aug; 70(2):566-75. PubMed ID: 25779926
    [Abstract] [Full Text] [Related]

  • 34. Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation.
    Yang M, Sun K, Zhou L, Yang R, Zhong Z, Zhu J.
    Can J Microbiol; 2009 Feb; 55(2):210-4. PubMed ID: 19295655
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Genetic suppressors of the Lotus japonicus har1-1 hypernodulation phenotype.
    Murray J, Karas B, Ross L, Brachmann A, Wagg C, Geil R, Perry J, Nowakowski K, MacGillivary M, Held M, Stougaard J, Peterson L, Parniske M, Szczyglowski K.
    Mol Plant Microbe Interact; 2006 Oct; 19(10):1082-91. PubMed ID: 17022172
    [Abstract] [Full Text] [Related]

  • 38. ROP6 is involved in root hair deformation induced by Nod factors in Lotus japonicus.
    Ke D, Li X, Han Y, Cheng L, Yuan H, Wang L.
    Plant Physiol Biochem; 2016 Nov; 108():488-498. PubMed ID: 27592173
    [Abstract] [Full Text] [Related]

  • 39. Nod factor requirements for efficient stem and root nodulation of the tropical legume Sesbania rostrata.
    D'Haeze W, Mergaert P, Promé JC, Holsters M.
    J Biol Chem; 2000 May 26; 275(21):15676-84. PubMed ID: 10821846
    [Abstract] [Full Text] [Related]

  • 40. Analysis of Nod-factor-induced calcium signaling in root hairs of symbiotically defective mutants of Lotus japonicus.
    Miwa H, Sun J, Oldroyd GE, Downie JA.
    Mol Plant Microbe Interact; 2006 Aug 26; 19(8):914-23. PubMed ID: 16903357
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 7.