These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
225 related items for PubMed ID: 15812803
21. Characterization of microbial communities removing nitrogen oxides from flue gas: the BioDeNOx process. Kumaraswamy R, van Dongen U, Kuenen JG, Abma W, van Loosdrecht MC, Muyzer G. Appl Environ Microbiol; 2005 Oct; 71(10):6345-52. PubMed ID: 16204556 [Abstract] [Full Text] [Related]
22. Reduction of Fe(III) chelated with citrate in an NOx scrubber solution by Enterococcus sp. FR-3. Li W, Liu N, Cai LL, Jiang JL, Chen JM. Bioresour Technol; 2011 Feb; 102(3):3049-54. PubMed ID: 21055921 [Abstract] [Full Text] [Related]
23. Continuous operation of foamed emulsion bioreactors treating toluene vapors. Kan E, Deshusses MA. Biotechnol Bioeng; 2005 Nov 05; 92(3):364-71. PubMed ID: 16041806 [Abstract] [Full Text] [Related]
24. Biological and chemical interaction of oxygen on the reduction of Fe(III)EDTA in a chemical absorption-biological reduction integrated NOx removal system. Zhang SH, Shi Y, Li W. Appl Microbiol Biotechnol; 2012 Mar 05; 93(6):2653-9. PubMed ID: 21931973 [Abstract] [Full Text] [Related]
25. NOx removal in chemical absorption-biological reduction integrated system: process rate and rate-limiting step. Xia YF, Lu BH, Liu N, Chen QL, Li SJ, Li W. Bioresour Technol; 2013 Dec 05; 149():184-90. PubMed ID: 24099974 [Abstract] [Full Text] [Related]
26. Correlating on-line monitoring parameters, pH, DO and ORP with nutrient removal in an intermittent cyclic process bioreactor system. Tanwar P, Nandy T, Ukey P, Manekar P. Bioresour Technol; 2008 Nov 05; 99(16):7630-5. PubMed ID: 18358714 [Abstract] [Full Text] [Related]
27. Simultaneous removal of NOX and SO2 from flue gas in an integrated FGD-CABR system by sulfur cycling-mediated Fe(II)EDTA regeneration. Xu XJ, Wu YN, Xiao QY, Xie P, Ren NQ, Yuan YX, Lee DJ, Chen C. Environ Res; 2022 Apr 01; 205():112541. PubMed ID: 34915032 [Abstract] [Full Text] [Related]
28. NOx monitoring of a simultaneous nitrifying-denitrifying (SND) activated sludge plant at different oxidation reduction potentials. Weissenbacher N, Loderer C, Lenz K, Mahnik SN, Wett B, Fuerhacker M. Water Res; 2007 Jan 01; 41(2):397-405. PubMed ID: 17166541 [Abstract] [Full Text] [Related]
29. DEAMOX--new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite. Kalyuzhnyi S, Gladchenko M, Mulder A, Versprille B. Water Res; 2006 Nov 01; 40(19):3637-45. PubMed ID: 16893559 [Abstract] [Full Text] [Related]
30. Autotrophic nitrogen removal in sequencing batch biofilm reactors at different oxygen supply modes. Wantawin C, Juateea J, Noophan PL, Munakata-Marr J. Water Sci Technol; 2008 Nov 01; 58(10):1889-94. PubMed ID: 19039166 [Abstract] [Full Text] [Related]
31. Treatment of pesticide wastewater by moving-bed biofilm reactor combined with Fenton-coagulation pretreatment. Chen S, Sun D, Chung JS. J Hazard Mater; 2007 Jun 01; 144(1-2):577-84. PubMed ID: 17141410 [Abstract] [Full Text] [Related]
32. [Investigation of effect and process of nitric oxide removal in rotating drum biofilter coupled with absorption by Fe(II) (EDTA)]. Chen J, Yang X, Yu JM, Jiang YF, Chen JM. Huan Jing Ke Xue; 2012 Feb 01; 33(2):539-44. PubMed ID: 22509594 [Abstract] [Full Text] [Related]
33. Prediction and inhibition of the N2O accumulation in the BioDeNO x process for NO x removal from flue gas. Chen J, Wang J, Zheng J, Chen J. Bioprocess Biosyst Eng; 2016 Dec 01; 39(12):1859-1865. PubMed ID: 27550229 [Abstract] [Full Text] [Related]
34. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms. Kishida N, Kim J, Tsuneda S, Sudo R. Water Res; 2006 Jul 01; 40(12):2303-10. PubMed ID: 16766009 [Abstract] [Full Text] [Related]
35. Dissimilatory reduction of FeIII (EDTA) with microorganisms in the system of nitric oxide removal from the flue gas by metal chelate absorption. Ma BY, Li W, Jing GH, Shi Y. J Environ Sci (China); 2004 Jul 01; 16(3):428-30. PubMed ID: 15272717 [Abstract] [Full Text] [Related]
36. Removing nitric oxide from flue gas using iron(II) citrate chelate absorption with microbial regeneration. Xu X, Chang SG. Chemosphere; 2007 Apr 01; 67(8):1628-36. PubMed ID: 17204301 [Abstract] [Full Text] [Related]
37. Enhanced reduction of Fe(II)EDTA-NO/Fe(III)EDTA in NO(x) scrubber solution using a three-dimensional biofilm-electrode reactor. Zhou Y, Gao L, Xia YF, Li W. Environ Sci Technol; 2012 Nov 20; 46(22):12640-7. PubMed ID: 23113866 [Abstract] [Full Text] [Related]
38. Current advances of integrated processes combining chemical absorption and biological reduction for NO x removal from flue gas. Zhang S, Chen H, Xia Y, Liu N, Lu BH, Li W. Appl Microbiol Biotechnol; 2014 Oct 20; 98(20):8497-512. PubMed ID: 25149446 [Abstract] [Full Text] [Related]
39. A new approach for the effective removal of NOx from flue gas by using an integrated system of oxidation-absorption-biological reduction. Yang JR, Wang Y, Chen H, Ren RP, Lv YK. J Hazard Mater; 2021 Feb 15; 404(Pt A):124109. PubMed ID: 33049641 [Abstract] [Full Text] [Related]
40. Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Shin KH, Cha DK. Chemosphere; 2008 May 15; 72(2):257-62. PubMed ID: 18331753 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]