These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


318 related items for PubMed ID: 1581327

  • 1. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. III. Permeability of spectrin-depleted inside-out membrane vesicles to hydrophilic nonelectrolytes. Formation of leaks by chemical or enzymatic modification of membrane proteins.
    Klonk S, Deuticke B.
    Biochim Biophys Acta; 1992 Apr 29; 1106(1):143-50. PubMed ID: 1581327
    [Abstract] [Full Text] [Related]

  • 2. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. II. Formation of membrane leaks in ghost membranes after limited proteolysis of skeletal proteins by trypsin.
    Klonk S, Deuticke B.
    Biochim Biophys Acta; 1992 Apr 29; 1106(1):137-42. PubMed ID: 1581326
    [Abstract] [Full Text] [Related]

  • 3. Involvement of cytoskeletal proteins in the barrier function of the human erythrocyte membrane. I. Impairment of resealing and formation of aqueous pores in the ghost membrane after modification of SH groups.
    Klonk S, Deuticke B.
    Biochim Biophys Acta; 1992 Apr 29; 1106(1):126-36. PubMed ID: 1581324
    [Abstract] [Full Text] [Related]

  • 4. Formation of aqueous pores in the human erythrocyte membrane after oxidative cross-linking of spectrin by diamide.
    Deuticke B, Poser B, Lütkemeier P, Haest CW.
    Biochim Biophys Acta; 1983 Jun 10; 731(2):196-210. PubMed ID: 6849917
    [Abstract] [Full Text] [Related]

  • 5. Ion selectivity of aqueous leaks induced in the erythrocyte membrane by crosslinking of membrane proteins.
    Deuticke B, Lütkemeier P, Sistemich M.
    Biochim Biophys Acta; 1984 Aug 22; 775(2):150-60. PubMed ID: 6432044
    [Abstract] [Full Text] [Related]

  • 6. Spectrin promotes the association of F-actin with the cytoplasmic surface of the human erythrocyte membrane.
    Fowler VM, Luna EJ, Hargreaves WR, Taylor DL, Branton D.
    J Cell Biol; 1981 Feb 22; 88(2):388-95. PubMed ID: 6894147
    [Abstract] [Full Text] [Related]

  • 7. Oxidative stress of human erythrocytes by iodate and periodate. Reversible formation of aqueous membrane pores due to SH-group oxidation.
    Heller KB, Poser B, Haest CW, Deuticke B.
    Biochim Biophys Acta; 1984 Oct 17; 777(1):107-16. PubMed ID: 6091752
    [Abstract] [Full Text] [Related]

  • 8. General and transport properties of hypotonic and isotonic preparations of resealed erythrocyte ghosts.
    Jausel-Hüsken S, Deuticke B.
    J Membr Biol; 1981 Oct 17; 63(1-2):61-70. PubMed ID: 7310852
    [Abstract] [Full Text] [Related]

  • 9. Alteration of the erythrocyte membrane via enzymatic degradation of ankyrin (band 2.1): subcellular surgery characterized by EPR spectroscopy.
    Hensley K, Postlewaite J, Dobbs P, Butterfield DA.
    Biochim Biophys Acta; 1993 Feb 09; 1145(2):205-11. PubMed ID: 8381664
    [Abstract] [Full Text] [Related]

  • 10. Tellurite-induced damage of the erythrocyte membrane. Manifestations and mechanisms.
    Deuticke B, Lütkemeier P, Poser B.
    Biochim Biophys Acta; 1992 Aug 10; 1109(1):97-107. PubMed ID: 1504084
    [Abstract] [Full Text] [Related]

  • 11. Spectrin extractability from erythrocyte in Duchenne muscular dystrophies and the effect of proteases on erythrocyte ghosts.
    Tsuchiya Y, Sugita H, Ishiura S, Imahori K.
    Clin Chim Acta; 1981 Feb 05; 109(3):285-93. PubMed ID: 6452973
    [Abstract] [Full Text] [Related]

  • 12. The role of band 4.1 in the association of actin with erythrocyte membranes.
    Cohen CM, Foley SF.
    Biochim Biophys Acta; 1982 Jun 28; 688(3):691-701. PubMed ID: 6889438
    [Abstract] [Full Text] [Related]

  • 13. Selective association of spectrin with the cytoplasmic surface of human erythrocyte plasma membranes. Quantitative determination with purified (32P)spectrin.
    Bennett V, Branton D.
    J Biol Chem; 1977 Apr 25; 252(8):2753-63. PubMed ID: 15998
    [Abstract] [Full Text] [Related]

  • 14. Spectrin as a stabilizer of the phospholipid asymmetry in the human erythrocyte membrane.
    Haest CW, Plasa G, Kamp D, Deuticke B.
    Biochim Biophys Acta; 1978 May 04; 509(1):21-32. PubMed ID: 647006
    [Abstract] [Full Text] [Related]

  • 15. Hereditary spherocytosis of man. Altered binding of cytoskeletal components to the erythrocyte membrane.
    Hill JS, Sawyer WH, Howlett GJ, Wiley JS.
    Biochem J; 1982 Feb 01; 201(2):259-66. PubMed ID: 7082289
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Formation of protein polymers in erythrocyte ghosts incubated with sonicated lipid vesicles. Effects on spectrin extractibility, permeability of ghosts to vesicles, intramembrane particle distribution and bleb formation.
    Alloisio N, Giraud F, Boutalbi Y, Chailley B, Delaunay J.
    Biochim Biophys Acta; 1983 Jan 19; 727(2):255-65. PubMed ID: 6838870
    [No Abstract] [Full Text] [Related]

  • 19. Reversible binding kinetics of a cytoskeletal protein at the erythrocyte submembrane.
    Stout AL, Axelrod D.
    Biophys J; 1994 Sep 19; 67(3):1324-34. PubMed ID: 7811947
    [Abstract] [Full Text] [Related]

  • 20. Hemolysis of human erythrocytes with saponin affects the membrane structure.
    Baumann E, Stoya G, Völkner A, Richter W, Lemke C, Linss W.
    Acta Histochem; 2000 Feb 19; 102(1):21-35. PubMed ID: 10726162
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.