These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
417 related items for PubMed ID: 15814529
1. Glycation of mitochondrial proteins from diabetic rat kidney is associated with excess superoxide formation. Rosca MG, Mustata TG, Kinter MT, Ozdemir AM, Kern TS, Szweda LI, Brownlee M, Monnier VM, Weiss MF. Am J Physiol Renal Physiol; 2005 Aug; 289(2):F420-30. PubMed ID: 15814529 [Abstract] [Full Text] [Related]
2. Alterations in renal mitochondrial respiration in response to the reactive oxoaldehyde methylglyoxal. Rosca MG, Monnier VM, Szweda LI, Weiss MF. Am J Physiol Renal Physiol; 2002 Jul; 283(1):F52-9. PubMed ID: 12060586 [Abstract] [Full Text] [Related]
3. [Oxidative phosphorylation, NADH-oxidase and succinate oxidase activity in testicular mitochondria of rats with alloxan diabetes]. Taryshkin AM, Sal'nik BIu, Dolgikh EV. Vopr Med Khim; 1986 Jul; 32(3):82-5. PubMed ID: 3727476 [Abstract] [Full Text] [Related]
4. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase. Kanwar M, Chan PS, Kern TS, Kowluru RA. Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3805-11. PubMed ID: 17652755 [Abstract] [Full Text] [Related]
5. Mitochondrial superoxide plays a crucial role in the development of mitochondrial dysfunction during high glucose exposure in rat renal proximal tubular cells. Munusamy S, MacMillan-Crow LA. Free Radic Biol Med; 2009 Apr 15; 46(8):1149-57. PubMed ID: 19439219 [Abstract] [Full Text] [Related]
6. Decrease in mitochondrial oxidative protein damage parameters in the streptozotocin-diabetic rat. Kayali R, Cakatay U, Telci A, Akçay T, Sivas A, Altug T. Diabetes Metab Res Rev; 2004 Apr 15; 20(4):315-21. PubMed ID: 15250034 [Abstract] [Full Text] [Related]
7. Oxidative and nitrosative stress in brain mitochondria of diabetic rats. Mastrocola R, Restivo F, Vercellinatto I, Danni O, Brignardello E, Aragno M, Boccuzzi G. J Endocrinol; 2005 Oct 15; 187(1):37-44. PubMed ID: 16214939 [Abstract] [Full Text] [Related]
8. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents. Turner N, Bruce CR, Beale SM, Hoehn KL, So T, Rolph MS, Cooney GJ. Diabetes; 2007 Aug 15; 56(8):2085-92. PubMed ID: 17519422 [Abstract] [Full Text] [Related]
9. Renal podocyte apoptosis in Zucker diabetic fatty rats: involvement of methylglyoxal-induced oxidative DNA damage. Kim J, Sohn E, Kim CS, Kim JS. J Comp Pathol; 2011 Jan 15; 144(1):41-7. PubMed ID: 20541219 [Abstract] [Full Text] [Related]
10. Impact of high glucose and transforming growth factor-β on bioenergetic profiles in podocytes. Stieger N, Worthmann K, Teng B, Engeli S, Das AM, Haller H, Schiffer M. Metabolism; 2012 Aug 15; 61(8):1073-86. PubMed ID: 22365040 [Abstract] [Full Text] [Related]
11. Cisplatin-induced nephrotoxicity is associated with oxidative stress, redox state unbalance, impairment of energetic metabolism and apoptosis in rat kidney mitochondria. Santos NA, Catão CS, Martins NM, Curti C, Bianchi ML, Santos AC. Arch Toxicol; 2007 Jul 15; 81(7):495-504. PubMed ID: 17216432 [Abstract] [Full Text] [Related]
12. The uncoupling effect of the nonsteroidal anti-inflammatory drug nimesulide in liver mitochondria from adjuvant-induced arthritic rats. Caparroz-Assef SM, Salgueiro-Pagadigorria CL, Bersani-Amado CA, Bracht A, Kelmer-Bracht AM, Ishii-Iwamoto EL. Cell Biochem Funct; 2001 Jun 15; 19(2):117-24. PubMed ID: 11335936 [Abstract] [Full Text] [Related]
13. Chromium(VI) interaction with plant and animal mitochondrial bioenergetics: a comparative study. Fernandes MA, Santos MS, Alpoim MC, Madeira VM, Vicente JA. J Biochem Mol Toxicol; 2002 Jun 15; 16(2):53-63. PubMed ID: 11979422 [Abstract] [Full Text] [Related]
14. Pro-oxidant mitochondrial matrix-targeted ubiquinone MitoQ10 acts as anti-oxidant at retarded electron transport or proton pumping within Complex I. Plecitá-Hlavatá L, Jezek J, Jezek P. Int J Biochem Cell Biol; 2009 Jun 15; 41(8-9):1697-707. PubMed ID: 19433311 [Abstract] [Full Text] [Related]
15. Ketone bodies alter dinitrophenol-induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes. Pelletier A, Coderre L. Am J Physiol Endocrinol Metab; 2007 May 15; 292(5):E1325-32. PubMed ID: 17227964 [Abstract] [Full Text] [Related]
16. Antioxidant SOD mimetic prevents NADPH oxidase-induced oxidative stress and renal damage in the early stage of experimental diabetes and hypertension. Peixoto EB, Pessoa BS, Biswas SK, Lopes de Faria JB. Am J Nephrol; 2009 May 15; 29(4):309-18. PubMed ID: 18849601 [Abstract] [Full Text] [Related]
17. 'Mild Uncoupling' does not decrease mitochondrial superoxide levels in cultured cerebellar granule neurons but decreases spare respiratory capacity and increases toxicity to glutamate and oxidative stress. Johnson-Cadwell LI, Jekabsons MB, Wang A, Polster BM, Nicholls DG. J Neurochem; 2007 Jun 15; 101(6):1619-31. PubMed ID: 17437552 [Abstract] [Full Text] [Related]
18. Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production. Zhang Y, Wada J, Hashimoto I, Eguchi J, Yasuhara A, Kanwar YS, Shikata K, Makino H. J Am Soc Nephrol; 2006 Apr 15; 17(4):1090-101. PubMed ID: 16510762 [Abstract] [Full Text] [Related]
19. Oxidative damage of mitochondrial proteins contributes to fruit senescence: a redox proteomics analysis. Qin G, Meng X, Wang Q, Tian S. J Proteome Res; 2009 May 15; 8(5):2449-62. PubMed ID: 19239264 [Abstract] [Full Text] [Related]
20. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Rolo AP, Palmeira CM. Toxicol Appl Pharmacol; 2006 Apr 15; 212(2):167-78. PubMed ID: 16490224 [Abstract] [Full Text] [Related] Page: [Next] [New Search]