These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


474 related items for PubMed ID: 15828667

  • 21. Denitrification devices in urban boilers change mercury isotope fractionation signatures of coal combustion products.
    Yuan J, Sun R, Wang R, Fu B, Meng M, Zheng W, Chen J.
    Environ Pollut; 2021 Jan 01; 268(Pt B):115753. PubMed ID: 33045583
    [Abstract] [Full Text] [Related]

  • 22. Mercury capture by native fly ash carbons in coal-fired power plants.
    Hower JC, Senior CL, Suuberg EM, Hurt RH, Wilcox JL, Olson ES.
    Prog Energy Combust Sci; 2010 Aug 01; 36(4):. PubMed ID: 24223466
    [Abstract] [Full Text] [Related]

  • 23. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies.
    Mokhtar MM, Taib RM, Hassim MH.
    J Air Waste Manag Assoc; 2014 Aug 01; 64(8):867-78. PubMed ID: 25185389
    [Abstract] [Full Text] [Related]

  • 24. Mercury speciation and distribution in a 660-megawatt utility boiler in Taiwan firing bituminous coals.
    Hsi HC, Lee HH, Hwang JF, Chen W.
    J Air Waste Manag Assoc; 2010 May 01; 60(5):514-22. PubMed ID: 20480850
    [Abstract] [Full Text] [Related]

  • 25. Mitigation of gaseous mercury emissions from waste-to-energy facilities: Homogeneous and heterogeneous Hg-oxidation pathways in presence of fly ashes.
    Rumayor M, Svoboda K, Švehla J, Pohořelý M, Šyc M.
    J Environ Manage; 2018 Jan 15; 206():276-283. PubMed ID: 29096141
    [Abstract] [Full Text] [Related]

  • 26. Source profiles of particulate matter emissions from a pilot-scale boiler burning North American coal blends.
    Lee SW.
    J Air Waste Manag Assoc; 2001 Nov 15; 51(11):1568-78. PubMed ID: 11720104
    [Abstract] [Full Text] [Related]

  • 27. Determination of mercury in ash and soil samples by oxygen flask combustion method--cold vapor atomic fluorescence spectrometry (CVAFS).
    Geng W, Nakajima T, Takanashi H, Ohki A.
    J Hazard Mater; 2008 Jun 15; 154(1-3):325-30. PubMed ID: 18023528
    [Abstract] [Full Text] [Related]

  • 28. Speciation and mass-balance of mercury from pulverized coal fired power plants burning western Canadian subbituminous coals.
    Goodarzi F.
    J Environ Monit; 2004 Oct 15; 6(10):792-8. PubMed ID: 15480492
    [Abstract] [Full Text] [Related]

  • 29. Air-substrate mercury exchange associated with landfill disposal of coal combustion products.
    Xin M, Gustin MS, Ladwig K, Pflughoeft-Hassett DF.
    J Air Waste Manag Assoc; 2006 Aug 15; 56(8):1167-76. PubMed ID: 16933649
    [Abstract] [Full Text] [Related]

  • 30. The performance of iodine on the removal of elemental mercury from the simulated coal-fired flue gas.
    Chi Y, Yan N, Qu Z, Qiao S, Jia J.
    J Hazard Mater; 2009 Jul 30; 166(2-3):776-81. PubMed ID: 19153004
    [Abstract] [Full Text] [Related]

  • 31. Mercury in Indian Thermal Coals.
    Das TB, Senapati RN, Agarwalla H.
    Bull Environ Contam Toxicol; 2020 Sep 30; 105(3):502-512. PubMed ID: 32728825
    [Abstract] [Full Text] [Related]

  • 32. Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion.
    Reddy MS, Basha S, Joshi HV, Jha B.
    J Hazard Mater; 2005 Aug 31; 123(1-3):242-9. PubMed ID: 15916850
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Active methods of mercury removal from flue gases.
    Marczak M, Budzyń S, Szczurowski J, Kogut K, Burmistrz P.
    Environ Sci Pollut Res Int; 2019 Mar 31; 26(9):8383-8392. PubMed ID: 29572741
    [Abstract] [Full Text] [Related]

  • 38. Identification of mercury species in coal combustion by-products from power plants using thermal desorption-atomic fluorescence spectrometry on-line coupling system.
    He KQ, Zhang XR, Li YP, Duan XL, Li Y, Jiang YH, Yuan XD, Zhang KG, Yuan CG.
    Chemosphere; 2023 Jan 31; 312(Pt 1):137206. PubMed ID: 36370763
    [Abstract] [Full Text] [Related]

  • 39. Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada.
    Barst BD, Ahad JME, Rose NL, Jautzy JJ, Drevnick PE, Gammon PR, Sanei H, Savard MM.
    Environ Pollut; 2017 Dec 31; 231(Pt 1):644-653. PubMed ID: 28846985
    [Abstract] [Full Text] [Related]

  • 40. Possibilities of mercury removal in the dry flue gas cleaning lines of solid waste incineration units.
    Svoboda K, Hartman M, Šyc M, Pohořelý M, Kameníková P, Jeremiáš M, Durda T.
    J Environ Manage; 2016 Jan 15; 166():499-511. PubMed ID: 26588812
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 24.