These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


283 related items for PubMed ID: 15828785

  • 1. Cytometry and velocimetry on a microfluidic chip using polyelectrolytic salt bridges.
    Chun H, Chung TD, Kim HC.
    Anal Chem; 2005 Apr 15; 77(8):2490-5. PubMed ID: 15828785
    [Abstract] [Full Text] [Related]

  • 2. Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes.
    Kim KB, Chun H, Kim HC, Chung TD.
    Electrophoresis; 2009 May 15; 30(9):1464-9. PubMed ID: 19340832
    [Abstract] [Full Text] [Related]

  • 3. Sample concentration and impedance detection on a microfluidic polymer chip.
    Sabounchi P, Morales AM, Ponce P, Lee LP, Simmons BA, Davalos RV.
    Biomed Microdevices; 2008 Oct 15; 10(5):661-70. PubMed ID: 18484178
    [Abstract] [Full Text] [Related]

  • 4. Ultrafast active mixer using polyelectrolytic ion extractor.
    Chun H, Kim HC, Chung TD.
    Lab Chip; 2008 May 15; 8(5):764-71. PubMed ID: 18432347
    [Abstract] [Full Text] [Related]

  • 5. Continuous low-voltage dc electroporation on a microfluidic chip with polyelectrolytic salt bridges.
    Kim SK, Kim JH, Kim KP, Chung TD.
    Anal Chem; 2007 Oct 15; 79(20):7761-6. PubMed ID: 17874852
    [Abstract] [Full Text] [Related]

  • 6. A portable microfluidic flow cytometer based on simultaneous detection of impedance and fluorescence.
    Joo S, Kim KH, Kim HC, Chung TD.
    Biosens Bioelectron; 2010 Feb 15; 25(6):1509-15. PubMed ID: 20004091
    [Abstract] [Full Text] [Related]

  • 7. On-chip determination of spermatozoa concentration using electrical impedance measurements.
    Segerink LI, Sprenkels AJ, ter Braak PM, Vermes I, van den Berg A.
    Lab Chip; 2010 Apr 21; 10(8):1018-24. PubMed ID: 20358109
    [Abstract] [Full Text] [Related]

  • 8. Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing.
    Mao X, Lin SC, Dong C, Huang TJ.
    Lab Chip; 2009 Jun 07; 9(11):1583-9. PubMed ID: 19458866
    [Abstract] [Full Text] [Related]

  • 9. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L, Lu J, Marchenko SA, Monuki ES, Flanagan LA, Lee AP.
    Electrophoresis; 2009 Mar 07; 30(5):782-91. PubMed ID: 19197906
    [Abstract] [Full Text] [Related]

  • 10. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S, Park JK.
    Lab Chip; 2005 Oct 07; 5(10):1161-7. PubMed ID: 16175274
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Optically induced flow cytometry for continuous microparticle counting and sorting.
    Lin YH, Lee GB.
    Biosens Bioelectron; 2008 Dec 01; 24(4):572-8. PubMed ID: 18635347
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Titanium-based dielectrophoresis devices for microfluidic applications.
    Zhang YT, Bottausci F, Rao MP, Parker ER, Mezic I, Macdonald NC.
    Biomed Microdevices; 2008 Aug 01; 10(4):509-17. PubMed ID: 18214682
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.