These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


175 related items for PubMed ID: 15829593

  • 1. Dynamic model of the octopus arm. II. Control of reaching movements.
    Yekutieli Y, Sagiv-Zohar R, Hochner B, Flash T.
    J Neurophysiol; 2005 Aug; 94(2):1459-68. PubMed ID: 15829593
    [Abstract] [Full Text] [Related]

  • 2. Dynamic model of the octopus arm. I. Biomechanics of the octopus reaching movement.
    Yekutieli Y, Sagiv-Zohar R, Aharonov R, Engel Y, Hochner B, Flash T.
    J Neurophysiol; 2005 Aug; 94(2):1443-58. PubMed ID: 15829594
    [Abstract] [Full Text] [Related]

  • 3. Stereotypical reaching movements of the octopus involve both bend propagation and arm elongation.
    Hanassy S, Botvinnik A, Flash T, Hochner B.
    Bioinspir Biomim; 2015 May 13; 10(3):035001. PubMed ID: 25970857
    [Abstract] [Full Text] [Related]

  • 4. Patterns of arm muscle activation involved in octopus reaching movements.
    Gutfreund Y, Flash T, Fiorito G, Hochner B.
    J Neurosci; 1998 Aug 01; 18(15):5976-87. PubMed ID: 9671683
    [Abstract] [Full Text] [Related]

  • 5. Octopuses use a human-like strategy to control precise point-to-point arm movements.
    Sumbre G, Fiorito G, Flash T, Hochner B.
    Curr Biol; 2006 Apr 18; 16(8):767-72. PubMed ID: 16631583
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Control of octopus arm extension by a peripheral motor program.
    Sumbre G, Gutfreund Y, Fiorito G, Flash T, Hochner B.
    Science; 2001 Sep 07; 293(5536):1845-8. PubMed ID: 11546877
    [Abstract] [Full Text] [Related]

  • 11. Equilibrium point control cannot be refuted by experimental reconstruction of equilibrium point trajectories.
    Kistemaker DA, Van Soest AK, Bobbert MF.
    J Neurophysiol; 2007 Sep 07; 98(3):1075-82. PubMed ID: 17615122
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Stability and motor adaptation in human arm movements.
    Burdet E, Tee KP, Mareels I, Milner TE, Chew CM, Franklin DW, Osu R, Kawato M.
    Biol Cybern; 2006 Jan 07; 94(1):20-32. PubMed ID: 16283374
    [Abstract] [Full Text] [Related]

  • 14. Virtual musculo-skeletal model for the biomechanical analysis of the upper limb.
    Pennestrì E, Stefanelli R, Valentini PP, Vita L.
    J Biomech; 2007 Jan 07; 40(6):1350-61. PubMed ID: 16824531
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Analyzing octopus movements using three-dimensional reconstruction.
    Yekutieli Y, Mitelman R, Hochner B, Flash T.
    J Neurophysiol; 2007 Sep 07; 98(3):1775-90. PubMed ID: 17625060
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Encoding of movement dynamics by Purkinje cell simple spike activity during fast arm movements under resistive and assistive force fields.
    Yamamoto K, Kawato M, Kotosaka S, Kitazawa S.
    J Neurophysiol; 2007 Feb 07; 97(2):1588-99. PubMed ID: 17079350
    [Abstract] [Full Text] [Related]

  • 20. Coding of movement- and force-related information in primate primary motor cortex: a computational approach.
    Guigon E, Baraduc P, Desmurget M.
    Eur J Neurosci; 2007 Jul 07; 26(1):250-60. PubMed ID: 17573920
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.