These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
291 related items for PubMed ID: 15833703
1. Direct electrochemistry of heme multicofactor-containing enzymes on alkanethiol-modified gold electrodes. E Ferapontova E, Gorton L. Bioelectrochemistry; 2005 Apr; 66(1-2):55-63. PubMed ID: 15833703 [Abstract] [Full Text] [Related]
2. Direct electron transfer of heme- and molybdopterin cofactor-containing chicken liver sulfite oxidase on alkanethiol-modified gold electrodes. Ferapontova EE, Ruzgas T, Gorton L. Anal Chem; 2003 Sep 15; 75(18):4841-50. PubMed ID: 14674462 [Abstract] [Full Text] [Related]
3. Bioelectrocatalytic detection of theophylline at theophylline oxidase electrodes. Ferapontova EE, Shipovskov S, Gorton L. Biosens Bioelectron; 2007 May 15; 22(11):2508-15. PubMed ID: 17081743 [Abstract] [Full Text] [Related]
4. Electrochemical investigation of cellobiose dehydrogenase from new fungal sources on Au electrodes. Stoica L, Dimcheva N, Haltrich D, Ruzgas T, Gorton L. Biosens Bioelectron; 2005 Apr 15; 20(10):2010-8. PubMed ID: 15741070 [Abstract] [Full Text] [Related]
5. Direct electrochemistry of Phanerochaete chrysosporium cellobiose dehydrogenase covalently attached onto gold nanoparticle modified solid gold electrodes. Matsumura H, Ortiz R, Ludwig R, Igarashi K, Samejima M, Gorton L. Langmuir; 2012 Jul 24; 28(29):10925-33. PubMed ID: 22746277 [Abstract] [Full Text] [Related]
6. Comparison of direct and mediated electron transfer for cellobiose dehydrogenase from Phanerochaete sordida. Tasca F, Gorton L, Harreither W, Haltrich D, Ludwig R, Nöll G. Anal Chem; 2009 Apr 01; 81(7):2791-8. PubMed ID: 19256522 [Abstract] [Full Text] [Related]
7. Fructose/dioxygen biofuel cell based on direct electron transfer-type bioelectrocatalysis. Kamitaka Y, Tsujimura S, Setoyama N, Kajino T, Kano K. Phys Chem Chem Phys; 2007 Apr 21; 9(15):1793-801. PubMed ID: 17415490 [Abstract] [Full Text] [Related]
8. Investigation of the mediated electron transfer mechanism of cellobiose dehydrogenase at cytochrome c-modified gold electrodes. Sarauli D, Ludwig R, Haltrich D, Gorton L, Lisdat F. Bioelectrochemistry; 2012 Oct 21; 87():9-14. PubMed ID: 21849263 [Abstract] [Full Text] [Related]
9. Electron transfer chain reaction of the extracellular flavocytochrome cellobiose dehydrogenase from the basidiomycete Phanerochaete chrysosporium. Igarashi K, Yoshida M, Matsumura H, Nakamura N, Ohno H, Samejima M, Nishino T. FEBS J; 2005 Jun 21; 272(11):2869-77. PubMed ID: 15943818 [Abstract] [Full Text] [Related]
10. Direct electrochemistry of hemoglobin adsorbed on self-assembled monolayers with different head groups or chain length. Mai Z, Zhao X, Dai Z, Zou X. Talanta; 2010 Apr 15; 81(1-2):167-75. PubMed ID: 20188904 [Abstract] [Full Text] [Related]
11. Direct electron transfer--a favorite electron route for cellobiose dehydrogenase (CDH) from Trametes villosa. Comparison with CDH from Phanerochaete chrysosporium. Stoica L, Ruzgas T, Ludwig R, Haltrich D, Gorton L. Langmuir; 2006 Dec 05; 22(25):10801-6. PubMed ID: 17129063 [Abstract] [Full Text] [Related]
12. Improvement of direct bioelectrocatalysis by cellobiose dehydrogenase on screen printed graphite electrodes using polyaniline modification. Trashin SA, Haltrich D, Ludwig R, Gorton L, Karyakin AA. Bioelectrochemistry; 2009 Sep 05; 76(1-2):87-92. PubMed ID: 19570729 [Abstract] [Full Text] [Related]
13. Electron transfer and ligand binding to cytochrome c' immobilized on self-assembled monolayers. de Groot MT, Evers TH, Merkx M, Koper MT. Langmuir; 2007 Jan 16; 23(2):729-36. PubMed ID: 17209627 [Abstract] [Full Text] [Related]
14. Heme plane orientation dependent direct electron transfer of cytochrome c at SAMs/Au electrodes with different wettability. Wang GX, Bao WJ, Wang M, Xia XH. Chem Commun (Camb); 2012 Nov 14; 48(88):10859-61. PubMed ID: 23023396 [Abstract] [Full Text] [Related]
15. Characterization and redox properties of cytochrome c552 from Thermus thermophilus adsorbed on different self-assembled thiol monolayers, used to model the chemical environment of the redox partner. Bernad S, Soulimane T, Mehkalif Z, Lecomte S. Biopolymers; 2006 Apr 05; 81(5):407-18. PubMed ID: 16365847 [Abstract] [Full Text] [Related]
16. Estimation of the orientation of heme in cytochrome C immobilized on a carboxylate-terminated alkanethiol monolayer on a au electrode by the use of electroreflectance spectroscopy with polarized light incidence. Sagara T, Kubo Y, Hiraishi K. J Phys Chem B; 2006 Aug 24; 110(33):16550-8. PubMed ID: 16913789 [Abstract] [Full Text] [Related]
17. Extended-gate FET-based enzyme sensor with ferrocenyl-alkanethiol modified gold sensing electrode. Ishige Y, Shimoda M, Kamahori M. Biosens Bioelectron; 2009 Jan 01; 24(5):1096-102. PubMed ID: 18672358 [Abstract] [Full Text] [Related]
18. Electrocatalytic oxidation of dihydronicotineamide adenine dinucleotide on gold electrode modified with catechol-terminated alkanethiol self-assembly. Nakano K, Ohkubo K, Taira H, Takagi M, Imato T. Anal Chim Acta; 2008 Jun 30; 619(1):30-6. PubMed ID: 18539170 [Abstract] [Full Text] [Related]
19. Spectroelectrochemical study of heme- and molybdopterin cofactor-containing chicken liver sulphite oxidase. Ferapontova EE, Christenson A, Hellmark A, Ruzgas T. Bioelectrochemistry; 2004 Jun 30; 63(1-2):49-53. PubMed ID: 15110247 [Abstract] [Full Text] [Related]
20. Direct heterogeneous electron transfer of theophylline oxidase. Christenson A, Dock E, Gorton L, Ruzgas T. Biosens Bioelectron; 2004 Sep 15; 20(2):176-83. PubMed ID: 15308219 [Abstract] [Full Text] [Related] Page: [Next] [New Search]