These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. [Mapping of diagnostically important antigenic regions of major outer membrane protein (MOMP) from Chlamydia trachomatis using recombinant proteins with overlapping structures]. Savel'eva NV, Zagriadskaia IuE, Klimashevskaia SV, Puzyrev VF, Burkov AN, Obriadina AP, Ulanova TI. Mol Gen Mikrobiol Virusol; 2009; (3):17-21. PubMed ID: 19705778 [Abstract] [Full Text] [Related]
4. Immunization with the Chlamydia trachomatis major outer membrane protein, using adjuvants developed for human vaccines, can induce partial protection in a mouse model against a genital challenge. Pal S, Peterson EM, Rappuoli R, Ratti G, de la Maza LM. Vaccine; 2006 Feb 06; 24(6):766-75. PubMed ID: 16199110 [Abstract] [Full Text] [Related]
5. Structural characterization of recombinant soluble rat neuroligin 1: mapping of secondary structure and glycosylation by mass spectrometry. Hoffman RC, Jennings LL, Tsigelny I, Comoletti D, Flynn RE, Sudhof TC, Taylor P. Biochemistry; 2004 Feb 17; 43(6):1496-506. PubMed ID: 14769026 [Abstract] [Full Text] [Related]
6. Comparison of the major outer-membrane protein (MOMP) gene of mouse pneumonitis (MoPn) and hamster SFPD strains of Chlamydia trachomatis with other Chlamydia strains. Zhang YX, Fox JG, Ho Y, Zhang L, Stills HF, Smith TF. Mol Biol Evol; 1993 Nov 17; 10(6):1327-42. PubMed ID: 8277858 [Abstract] [Full Text] [Related]
7. Analysis of the original antigenic sin antibody response to the major outer membrane protein of Chlamydia trachomatis. Berry JD, Peeling RW, Brunham RC. J Infect Dis; 1999 Jan 17; 179(1):180-6. PubMed ID: 9841837 [Abstract] [Full Text] [Related]
8. Primary human T-cell responses to the major outer membrane protein of Chlamydia trachomatis. Stagg AJ, Elsley WA, Pickett MA, Ward ME, Knight SC. Immunology; 1993 May 17; 79(1):1-9. PubMed ID: 8099564 [Abstract] [Full Text] [Related]
9. Bacterial expression, characterization, and disulfide bond determination of soluble human NTPDase6 (CD39L2) nucleotidase: implications for structure and function. Ivanenkov VV, Murphy-Piedmonte DM, Kirley TL. Biochemistry; 2003 Oct 14; 42(40):11726-35. PubMed ID: 14529283 [Abstract] [Full Text] [Related]
10. Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. Yen TY, Yan H, Macher BA. J Mass Spectrom; 2002 Jan 14; 37(1):15-30. PubMed ID: 11813307 [Abstract] [Full Text] [Related]
11. Chlamydia trachomatis major outer membrane protein (MOMP) epitopes that activate HLA class II-restricted T cells from infected humans. Ortiz L, Demick KP, Petersen JW, Polka M, Rudersdorf RA, Van der Pol B, Jones R, Angevine M, DeMars R. J Immunol; 1996 Nov 15; 157(10):4554-67. PubMed ID: 8906834 [Abstract] [Full Text] [Related]
12. [Prediction of the B cell epitopes for the major outer membrane protein of Chlamydia trachomatis]. Zhu S, Shi Z, Wang P, Li W, Zhang L. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Dec 15; 25(6):1397-400. PubMed ID: 19166217 [Abstract] [Full Text] [Related]
13. Recombinant expression of Chlamydia trachomatis major outer membrane protein in E. Coli outer membrane as a substrate for vaccine research. Wen Z, Boddicker MA, Kaufhold RM, Khandelwal P, Durr E, Qiu P, Lucas BJ, Nahas DD, Cook JC, Touch S, Skinner JM, Espeseth AS, Przysiecki CT, Zhang L. BMC Microbiol; 2016 Jul 27; 16(1):165. PubMed ID: 27464881 [Abstract] [Full Text] [Related]
14. Analysis of proteins in Chlamydia trachomatis L2 outer membrane complex, COMC. Birkelund S, Morgan-Fisher M, Timmerman E, Gevaert K, Shaw AC, Christiansen G. FEMS Immunol Med Microbiol; 2009 Mar 27; 55(2):187-95. PubMed ID: 19187221 [Abstract] [Full Text] [Related]
15. Partial protection against genital reinfection by immunization of guinea-pigs with isolated outer-membrane proteins of the chlamydial agent of guinea-pig inclusion conjunctivitis. Batteiger BE, Rank RG, Bavoil PM, Soderberg LS. J Gen Microbiol; 1993 Dec 27; 139(12):2965-72. PubMed ID: 7510322 [Abstract] [Full Text] [Related]
16. Identification of surface-exposed components of MOMP of Chlamydia trachomatis serovar F. Wang Y, Berg EA, Feng X, Shen L, Smith T, Costello CE, Zhang YX. Protein Sci; 2006 Jan 27; 15(1):122-34. PubMed ID: 16322562 [Abstract] [Full Text] [Related]
17. Structure-function relationships for the IL-2 receptor system. V. Structure-activity analysis of modified and truncated forms of the Tac receptor protein: site-specific mutagenesis of cysteine residues. Rusk CM, Neeper MP, Kuo LM, Kutny RM, Robb RJ. J Immunol; 1988 Apr 01; 140(7):2249-59. PubMed ID: 2832473 [Abstract] [Full Text] [Related]
18. Molecular characterization of the major outer membrane protein of Haemophilus somnus. Khan MS, Tanaka A, Ide H, Hoshinoo K, Hanafusa Y, Tagawa Y. Vet Microbiol; 2005 May 20; 107(3-4):179-92. PubMed ID: 15863277 [Abstract] [Full Text] [Related]
19. Surface topography of phytochrome A deduced from specific chemical modification with iodoacetamide. Lapko VN, Jiang XY, Smith DL, Song PS. Biochemistry; 1998 Sep 08; 37(36):12526-35. PubMed ID: 9730825 [Abstract] [Full Text] [Related]
20. A novel chimeric MOMP antigen expressed in Escherichia coli, Arabidopsis thaliana, and Daucus carota as a potential Chlamydia trachomatis vaccine candidate. Kalbina I, Wallin A, Lindh I, Engström P, Andersson S, Strid K. Protein Expr Purif; 2011 Dec 08; 80(2):194-202. PubMed ID: 21903168 [Abstract] [Full Text] [Related] Page: [Next] [New Search]