These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
461 related items for PubMed ID: 15836229
21. Quantum effects in liquid water and ice: model dependence. Hernández de la Peña L, Kusalik PG. J Chem Phys; 2006 Aug 07; 125(5):054512. PubMed ID: 16942231 [Abstract] [Full Text] [Related]
22. Characterization of the TIP4P-Ew water model: vapor pressure and boiling point. Horn HW, Swope WC, Pitera JW. J Chem Phys; 2005 Nov 15; 123(19):194504. PubMed ID: 16321097 [Abstract] [Full Text] [Related]
23. Dielectric constant of ice Ih and ice V: a computer simulation study. MacDowell LG, Vega C. J Phys Chem B; 2010 May 13; 114(18):6089-98. PubMed ID: 20397671 [Abstract] [Full Text] [Related]
24. The thermodynamic and ground state properties of the TIP4P water octamer. Asare E, Musah AR, Curotto E, Freeman DL, Doll JD. J Chem Phys; 2009 Nov 14; 131(18):184508. PubMed ID: 19916613 [Abstract] [Full Text] [Related]
25. Heat capacity of water: A signature of nuclear quantum effects. Vega C, Conde MM, McBride C, Abascal JL, Noya EG, Ramirez R, Sesé LM. J Chem Phys; 2010 Jan 28; 132(4):046101. PubMed ID: 20113070 [Abstract] [Full Text] [Related]
26. Dynamics of TIP5P and TIP4P/ice potentials. Picaud S. J Chem Phys; 2006 Nov 07; 125(17):174712. PubMed ID: 17100466 [Abstract] [Full Text] [Related]
27. Kinetic aspects of the thermostatted growth of ice from supercooled water in simulations. Weiss VC, Rullich M, Köhler C, Frauenheim T. J Chem Phys; 2011 Jul 21; 135(3):034701. PubMed ID: 21787017 [Abstract] [Full Text] [Related]
28. Sources of the deficiencies in the popular SPC/E and TIP3P models of water. Kiss PT, Baranyai A. J Chem Phys; 2011 Feb 07; 134(5):054106. PubMed ID: 21303091 [Abstract] [Full Text] [Related]
29. The shear viscosity of rigid water models. González MA, Abascal JL. J Chem Phys; 2010 Mar 07; 132(9):096101. PubMed ID: 20210414 [Abstract] [Full Text] [Related]
30. Limitations of the rigid planar nonpolarizable models of water. Baranyai A, Bartók A, Chialvo AA. J Chem Phys; 2006 Feb 21; 124(7):74507. PubMed ID: 16497057 [Abstract] [Full Text] [Related]
31. Plastic crystal phases of simple water models. Aragones JL, Vega C. J Chem Phys; 2009 Jun 28; 130(24):244504. PubMed ID: 19566163 [Abstract] [Full Text] [Related]
32. The anomalously high melting temperature of bilayer ice. Kastelowitz N, Johnston JC, Molinero V. J Chem Phys; 2010 Mar 28; 132(12):124511. PubMed ID: 20370137 [Abstract] [Full Text] [Related]
33. Simulated surface tensions of common water models. Chen F, Smith PE. J Chem Phys; 2007 Jun 14; 126(22):221101. PubMed ID: 17581036 [Abstract] [Full Text] [Related]
34. A study of the ice-water interface using the TIP4P/2005 water model. Benet J, MacDowell LG, Sanz E. Phys Chem Chem Phys; 2014 Oct 28; 16(40):22159-66. PubMed ID: 25213106 [Abstract] [Full Text] [Related]
35. Structural properties of water: comparison of the SPC, SPCE, TIP4P, and TIP5P models of water. Zielkiewicz J. J Chem Phys; 2005 Sep 08; 123(10):104501. PubMed ID: 16178604 [Abstract] [Full Text] [Related]
36. The ice-vapor interface and the melting point of ice I(h) for the polarizable POL3 water model. Muchová E, Gladich I, Picaud S, Hoang PN, Roeselová M. J Phys Chem A; 2011 Jun 16; 115(23):5973-82. PubMed ID: 21452834 [Abstract] [Full Text] [Related]
37. Quantum path integral simulation of isotope effects in the melting temperature of ice Ih. Ramírez R, Herrero CP. J Chem Phys; 2010 Oct 14; 133(14):144511. PubMed ID: 20950021 [Abstract] [Full Text] [Related]
38. Coarse-Graining of TIP4P/2005, TIP4P-Ew, SPC/E, and TIP3P to Monatomic Anisotropic Water Models Using Relative Entropy Minimization. Lu J, Qiu Y, Baron R, Molinero V. J Chem Theory Comput; 2014 Sep 09; 10(9):4104-20. PubMed ID: 26588552 [Abstract] [Full Text] [Related]
39. Capillary waves at the liquid-vapor interface and the surface tension of water. Ismail AE, Grest GS, Stevens MJ. J Chem Phys; 2006 Jul 07; 125(1):014702. PubMed ID: 16863319 [Abstract] [Full Text] [Related]