These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Solvation dynamics and electric field relaxation in an imidazolium-PF6 ionic liquid: from room temperature to the glass transition. Ito N, Richert R. J Phys Chem B; 2007 May 10; 111(18):5016-22. PubMed ID: 17474705 [Abstract] [Full Text] [Related]
3. Dynamics of glass-forming liquids. IX. Structural versus dielectric relaxation in monohydroxy alcohols. Wang LM, Richert R. J Chem Phys; 2004 Dec 08; 121(22):11170-6. PubMed ID: 15634071 [Abstract] [Full Text] [Related]
4. Molecular motions in amorphous ibuprofen as studied by broadband dielectric spectroscopy. Brás AR, Noronha JP, Antunes AM, Cardoso MM, Schönhals A, Affouard F, Dionísio M, Correia NT. J Phys Chem B; 2008 Sep 04; 112(35):11087-99. PubMed ID: 18686991 [Abstract] [Full Text] [Related]
5. Dynamics of supercooled water in confined geometry. Bergman R, Swenson J. Nature; 2000 Jan 20; 403(6767):283-6. PubMed ID: 10659841 [Abstract] [Full Text] [Related]
6. Identification of dielectric and structural relaxations in glass-forming secondary amides. Wang LM, Richert R. J Chem Phys; 2005 Aug 01; 123(5):054516. PubMed ID: 16108678 [Abstract] [Full Text] [Related]
7. Dynamics of a supercooled ionic liquid studied by optical and dielectric spectroscopy. Ito N, Huang W, Richert R. J Phys Chem B; 2006 Mar 09; 110(9):4371-7. PubMed ID: 16509737 [Abstract] [Full Text] [Related]
11. Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior. Kushima A, Lin X, Li J, Qian X, Eapen J, Mauro JC, Diep P, Yip S. J Chem Phys; 2009 Oct 28; 131(16):164505. PubMed ID: 19894954 [Abstract] [Full Text] [Related]
12. Low-temperature relaxation and entropic barriers in supercooled liquids. Mohanty U, Oppenheim I, Taubes CH. Science; 1994 Oct 21; 266(5184):425-7. PubMed ID: 17816687 [Abstract] [Full Text] [Related]
13. Exponential probe rotation in glass-forming liquids. Wang LM, Richert R. J Chem Phys; 2004 Jun 15; 120(23):11082-9. PubMed ID: 15268138 [Abstract] [Full Text] [Related]
14. Dielectric and mechanical relaxation in isooctylcyanobiphenyl (8*OCB). Pawlus S, Mierzwa M, Paluch M, Rzoska SJ, Roland CM. J Phys Condens Matter; 2010 Jun 16; 22(23):235101. PubMed ID: 21393760 [Abstract] [Full Text] [Related]
15. Contributions of dipolar relaxation processes and ionic transport to the response of liquids to electrical perturbation fields. Sanchis MJ, Ortiz-Serna P, Carsí M, Díaz-Calleja R, Riande E, Gargallo L, Radić D. J Phys Chem B; 2011 May 19; 115(19):5730-40. PubMed ID: 21488650 [Abstract] [Full Text] [Related]
16. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure. Kaminska E, Kaminski K, Paluch M, Ngai KL. J Chem Phys; 2006 Apr 28; 124(16):164511. PubMed ID: 16674150 [Abstract] [Full Text] [Related]
18. Gaussian excitations model for glass-former dynamics and thermodynamics. Matyushov DV, Angell CA. J Chem Phys; 2007 Mar 07; 126(9):094501. PubMed ID: 17362109 [Abstract] [Full Text] [Related]
19. Dynamics of supercooled and glassy dipropyleneglycol dibenzoate as functions of temperature and aging: Interpretation within the coupling model framework. Prevosto D, Capaccioli S, Lucchesi M, Rolla PA, Ngai KL. J Chem Phys; 2004 Mar 08; 120(10):4808-15. PubMed ID: 15267341 [Abstract] [Full Text] [Related]
20. Moderately and strongly supercooled liquids: a temperature-derivative study of the primary relaxation time scale. Kokshenev VB, Borges PD, Sullivan NS. J Chem Phys; 2005 Mar 15; 122(11):114510. PubMed ID: 15836232 [Abstract] [Full Text] [Related] Page: [Next] [New Search]