These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


366 related items for PubMed ID: 15850204

  • 1. Statistical modelling of riverine nutrient sources and retention in the Lake Peipsi drainage basin.
    Vassiljev A, Stålnacke P.
    Water Sci Technol; 2005; 51(3-4):309-17. PubMed ID: 15850204
    [Abstract] [Full Text] [Related]

  • 2. Modelling nutrient fluxes from diffuse and point emissions to river loads: the Estonian part of the transboundary Lake Peipsi/Chudskoe drainage basin (Russia/Estonia/Latvia).
    Mourad D, van der Perk M.
    Water Sci Technol; 2004; 49(3):21-8. PubMed ID: 15053095
    [Abstract] [Full Text] [Related]

  • 3. GIS-based quantification of future nutrient loads into Lake Peipsi/Chudskoe using qualitative regional development scenarios.
    Mourad DS, Van der Perk M, Gooch GD, Loigu E, Piirimäe K, Stålnacke P.
    Water Sci Technol; 2005; 51(3-4):355-63. PubMed ID: 15850209
    [Abstract] [Full Text] [Related]

  • 4. Is the destabilisation of lake peipsi ecosystem caused by increased phosphorus loading or decreased nitrogen loading?
    Nõges T, Laugaste R, Loigu E, Nedogarko I, Skakalski B, Nõges P.
    Water Sci Technol; 2005; 51(3-4):267-74. PubMed ID: 15850199
    [Abstract] [Full Text] [Related]

  • 5. Climate-change impacts on hydrology and nutrients in a Danish lowland river basin.
    Andersen HE, Kronvang B, Larsen SE, Hoffmann CC, Jensen TS, Rasmussen EK.
    Sci Total Environ; 2006 Jul 15; 365(1-3):223-37. PubMed ID: 16647104
    [Abstract] [Full Text] [Related]

  • 6. Modelling nutrient emissions and the impact of nutrient reduction measures in the Weser river basin, Germany.
    Hirt U, Venohr M, Kreins P, Behrendt H.
    Water Sci Technol; 2008 Jul 15; 58(11):2251-8. PubMed ID: 19092203
    [Abstract] [Full Text] [Related]

  • 7. Nitrogen in river basins: sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland.
    Lepistö A, Granlund K, Kortelainen P, Räike A.
    Sci Total Environ; 2006 Jul 15; 365(1-3):238-59. PubMed ID: 16624380
    [Abstract] [Full Text] [Related]

  • 8. Nutrient emissions from diffuse and point sources into the River Danube and its main tributaries for the period of 1998-2000--results and problems.
    Schreiber H, Behrendt H, Constantinescu LT, Cvitanic I, Drumea D, Jabucar D, Juran S, Pataki B, Snishko S, Zessner M.
    Water Sci Technol; 2005 Jul 15; 51(3-4):283-90. PubMed ID: 15850201
    [Abstract] [Full Text] [Related]

  • 9. Nitrate concentrations in river waters of the upper Thames and its tributaries.
    Neal C, Jarvie HP, Neal M, Hill L, Wickham H.
    Sci Total Environ; 2006 Jul 15; 365(1-3):15-32. PubMed ID: 16618496
    [Abstract] [Full Text] [Related]

  • 10. Lessons learned from investigations on case study level for modelling of nutrient emissions in the Danube basin.
    Schilling C, Behrendt H, Blaschke A, Danielescu S, Dimova G, Gabriel O, Heinecke U, Kovacs A, Lampert C, Postolache C, Schreiber H, Strauss P, Zessner M.
    Water Sci Technol; 2005 Jul 15; 51(11):183-91. PubMed ID: 16114632
    [Abstract] [Full Text] [Related]

  • 11. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.
    Schaffner M, Bader HP, Scheidegger R.
    Sci Total Environ; 2009 Aug 15; 407(17):4902-15. PubMed ID: 19501876
    [Abstract] [Full Text] [Related]

  • 12. Nitrogen retention in a river system and the effects of river morphology and lakes.
    Venohr M, Donohue I, Fogelberg S, Arheimer B, Irvine K, Behrendt H.
    Water Sci Technol; 2005 Aug 15; 51(3-4):19-29. PubMed ID: 15850170
    [Abstract] [Full Text] [Related]

  • 13. Phosphorus dynamics observed through increasing scales in a nested headwater-to-river channel study.
    Haygarth PM, Wood FL, Heathwaite AL, Butler PJ.
    Sci Total Environ; 2005 May 15; 344(1-3):83-106. PubMed ID: 15907512
    [Abstract] [Full Text] [Related]

  • 14. Dissolved and particulate nutrient export from rural catchments: a case study from Luxembourg.
    Salvia-Castellví M, Iffly JF, Borght PV, Hoffmann L.
    Sci Total Environ; 2005 May 15; 344(1-3):51-65. PubMed ID: 15907510
    [Abstract] [Full Text] [Related]

  • 15. 2020s scenario analysis of nutrient load in the Mekong River Basin using a distributed hydrological model.
    Yoshimura C, Zhou M, Kiem AS, Fukami K, Prasantha HH, Ishidaira H, Takeuchi K.
    Sci Total Environ; 2009 Oct 01; 407(20):5356-66. PubMed ID: 19625073
    [Abstract] [Full Text] [Related]

  • 16. Nitrogen and phosphorus retention in surface waters: an inter-comparison of predictions by catchment models of different complexity.
    Hejzlar J, Anthony S, Arheimer B, Behrendt H, Bouraoui F, Grizzetti B, Groenendijk P, Jeuken MH, Johnsson H, Lo Porto A, Kronvang B, Panagopoulos Y, Siderius C, Silgram M, Venohr M, Zaloudík J.
    J Environ Monit; 2009 Mar 01; 11(3):584-93. PubMed ID: 19280036
    [Abstract] [Full Text] [Related]

  • 17. Recent trends in nutrient concentrations in Estonian rivers as a response to large-scale changes in land-use intensity and life-styles.
    Iital A, Pachel K, Loigu E, Pihlak M, Leisk U.
    J Environ Monit; 2010 Jan 01; 12(1):178-88. PubMed ID: 20082012
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.