These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
111 related items for PubMed ID: 15851412
1. Thioredoxin affinity chromatography: a useful method for further understanding the thioredoxin network. Hisabori T, Hara S, Fujii T, Yamazaki D, Hosoya-Matsuda N, Motohashi K. J Exp Bot; 2005 Jun; 56(416):1463-8. PubMed ID: 15851412 [Abstract] [Full Text] [Related]
2. Towards a functional dissection of thioredoxin networks in plant cells. Hisabori T, Motohashi K, Hosoya-Matsuda N, Ueoka-Nakanishi H, Romano PG. Photochem Photobiol; 2007 Jun; 83(1):145-51. PubMed ID: 16706599 [Abstract] [Full Text] [Related]
3. Prediction of thioredoxin and glutaredoxin target proteins by identifying reversibly oxidized cysteinyl residues. Lee HM, Dietz KJ, Hofestädt R. J Integr Bioinform; 2010 Mar 25; 7(3):. PubMed ID: 20375441 [Abstract] [Full Text] [Related]
4. Identification of thioredoxin targeted proteins using thioredoxin single cysteine mutant-immobilized resin. Motohashi K, Romano PG, Hisabori T. Methods Mol Biol; 2009 Mar 25; 479():117-31. PubMed ID: 19083171 [Abstract] [Full Text] [Related]
5. Introduction of the disulfide proteome: application of a technique for the analysis of plant storage proteins as well as allergens. Yano H, Kuroda S. J Proteome Res; 2008 Aug 25; 7(8):3071-9. PubMed ID: 18624400 [Abstract] [Full Text] [Related]
6. Plant thioredoxins are key actors in the oxidative stress response. Vieira Dos Santos C, Rey P. Trends Plant Sci; 2006 Jul 25; 11(7):329-34. PubMed ID: 16782394 [Abstract] [Full Text] [Related]
7. Analysis of the proteins targeted by CDSP32, a plastidic thioredoxin participating in oxidative stress responses. Rey P, Cuiné S, Eymery F, Garin J, Court M, Jacquot JP, Rouhier N, Broin M. Plant J; 2005 Jan 25; 41(1):31-42. PubMed ID: 15610347 [Abstract] [Full Text] [Related]
8. Concepts and approaches towards understanding the cellular redox proteome. Ströher E, Dietz KJ. Plant Biol (Stuttg); 2006 Jul 25; 8(4):407-18. PubMed ID: 16906481 [Abstract] [Full Text] [Related]
9. Chloroplasts as source and target of cellular redox regulation: a discussion on chloroplast redox signals in the context of plant physiology. Baier M, Dietz KJ. J Exp Bot; 2005 Jun 25; 56(416):1449-62. PubMed ID: 15863449 [Abstract] [Full Text] [Related]
12. Membrane proteins from the cyanobacterium Synechocystis sp. PCC 6803 interacting with thioredoxin. Mata-Cabana A, Florencio FJ, Lindahl M. Proteomics; 2007 Nov 25; 7(21):3953-63. PubMed ID: 17922517 [Abstract] [Full Text] [Related]
13. From cytosol to organelles: 14-3-3 proteins as multifunctional regulators of plant cell. Aducci P, Camoni L, Marra M, Visconti S. IUBMB Life; 2002 Jan 25; 53(1):49-55. PubMed ID: 12018408 [Abstract] [Full Text] [Related]
14. Yet another plant thioredoxin. Balmer Y, Buchanan BB. Trends Plant Sci; 2002 May 25; 7(5):191-3. PubMed ID: 11992819 [Abstract] [Full Text] [Related]
15. The Unprecedented Versatility of the Plant Thioredoxin System. Geigenberger P, Thormählen I, Daloso DM, Fernie AR. Trends Plant Sci; 2017 Mar 25; 22(3):249-262. PubMed ID: 28139457 [Abstract] [Full Text] [Related]
16. Identification of S-nitrosylated proteins in plants. Sell S, Lindermayr C, Durner J. Methods Enzymol; 2008 Mar 25; 440():283-93. PubMed ID: 18423225 [Abstract] [Full Text] [Related]