These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 15851618

  • 1. Hyperhomocysteinemia, a cardiac metabolic disease: role of nitric oxide and the p22phox subunit of NADPH oxidase.
    Becker JS, Adler A, Schneeberger A, Huang H, Wang Z, Walsh E, Koller A, Hintze TH.
    Circulation; 2005 Apr 26; 111(16):2112-8. PubMed ID: 15851618
    [Abstract] [Full Text] [Related]

  • 2. Homocysteine stimulates NADPH oxidase-mediated superoxide production leading to endothelial dysfunction in rats.
    Edirimanne VE, Woo CW, Siow YL, Pierce GN, Xie JY, O K.
    Can J Physiol Pharmacol; 2007 Dec 26; 85(12):1236-47. PubMed ID: 18066125
    [Abstract] [Full Text] [Related]

  • 3. A defect of neuronal nitric oxide synthase increases xanthine oxidase-derived superoxide anion and attenuates the control of myocardial oxygen consumption by nitric oxide derived from endothelial nitric oxide synthase.
    Kinugawa S, Huang H, Wang Z, Kaminski PM, Wolin MS, Hintze TH.
    Circ Res; 2005 Feb 18; 96(3):355-62. PubMed ID: 15637297
    [Abstract] [Full Text] [Related]

  • 4. Differential effects of diabetes on the expression of the gp91phox homologues nox1 and nox4.
    Wendt MC, Daiber A, Kleschyov AL, Mülsch A, Sydow K, Schulz E, Chen K, Keaney JF, Lassègue B, Walter U, Griendling KK, Münzel T.
    Free Radic Biol Med; 2005 Aug 01; 39(3):381-91. PubMed ID: 15993337
    [Abstract] [Full Text] [Related]

  • 5. Penicillamine administration reverses the inhibitory effect of hyperhomocysteinaemia on endothelium-dependent relaxation and superoxide formation in the aorta of the rabbit.
    Shukla N, Koupparis A, Jones RA, Angelini GD, Persad R, Jeremy JY.
    Eur J Pharmacol; 2006 Feb 15; 531(1-3):201-8. PubMed ID: 16451799
    [Abstract] [Full Text] [Related]

  • 6. Gene therapy of endothelial nitric oxide synthase and manganese superoxide dismutase restores delayed wound healing in type 1 diabetic mice.
    Luo JD, Wang YY, Fu WL, Wu J, Chen AF.
    Circulation; 2004 Oct 19; 110(16):2484-93. PubMed ID: 15262829
    [Abstract] [Full Text] [Related]

  • 7. Increased superoxide production in coronary arteries in hyperhomocysteinemia: role of tumor necrosis factor-alpha, NAD(P)H oxidase, and inducible nitric oxide synthase.
    Ungvari Z, Csiszar A, Edwards JG, Kaminski PM, Wolin MS, Kaley G, Koller A.
    Arterioscler Thromb Vasc Biol; 2003 Mar 01; 23(3):418-24. PubMed ID: 12615666
    [Abstract] [Full Text] [Related]

  • 8. Folic acid supplementation inhibits NADPH oxidase-mediated superoxide anion production in the kidney.
    Hwang SY, Siow YL, Au-Yeung KK, House J, O K.
    Am J Physiol Renal Physiol; 2011 Jan 01; 300(1):F189-98. PubMed ID: 20980407
    [Abstract] [Full Text] [Related]

  • 9. NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BKbeta1-/- mice.
    Oelze M, Warnholtz A, Faulhaber J, Wenzel P, Kleschyov AL, Coldewey M, Hink U, Pongs O, Fleming I, Wassmann S, Meinertz T, Ehmke H, Daiber A, Münzel T.
    Arterioscler Thromb Vasc Biol; 2006 Aug 01; 26(8):1753-9. PubMed ID: 16763163
    [Abstract] [Full Text] [Related]

  • 10. The expression of the NADPH oxidase subunit p22phox is regulated by a redox-sensitive pathway in endothelial cells.
    Djordjevic T, Pogrebniak A, BelAiba RS, Bonello S, Wotzlaw C, Acker H, Hess J, Görlach A.
    Free Radic Biol Med; 2005 Mar 01; 38(5):616-30. PubMed ID: 15683718
    [Abstract] [Full Text] [Related]

  • 11. NAD(P)H oxidase-generated superoxide anion accounts for reduced control of myocardial O2 consumption by NO in old Fischer 344 rats.
    Adler A, Messina E, Sherman B, Wang Z, Huang H, Linke A, Hintze TH.
    Am J Physiol Heart Circ Physiol; 2003 Sep 01; 285(3):H1015-22. PubMed ID: 12915388
    [Abstract] [Full Text] [Related]

  • 12. Nitric oxide suppresses NADPH oxidase-dependent superoxide production by S-nitrosylation in human endothelial cells.
    Selemidis S, Dusting GJ, Peshavariya H, Kemp-Harper BK, Drummond GR.
    Cardiovasc Res; 2007 Jul 15; 75(2):349-58. PubMed ID: 17568572
    [Abstract] [Full Text] [Related]

  • 13. Alcohol-induced impairment of neuronal nitric oxide synthase (nNOS)-dependent dilation of cerebral arterioles: role of NAD(P)H oxidase.
    Sun H, Molacek E, Zheng H, Fang Q, Patel KP, Mayhan WG.
    J Mol Cell Cardiol; 2006 Feb 15; 40(2):321-8. PubMed ID: 16403412
    [Abstract] [Full Text] [Related]

  • 14. Cavernosal dysfunction in a rabbit model of hyperhomocysteinaemia.
    Jones RW, Jeremy JY, Koupparis A, Persad R, Shukla N.
    BJU Int; 2005 Jan 15; 95(1):125-30. PubMed ID: 15638909
    [Abstract] [Full Text] [Related]

  • 15. Ghrelin inhibits vascular superoxide production in spontaneously hypertensive rats.
    Kawczynska-Drozdz A, Olszanecki R, Jawien J, Brzozowski T, Pawlik WW, Korbut R, Guzik TJ.
    Am J Hypertens; 2006 Jul 15; 19(7):764-7. PubMed ID: 16814134
    [Abstract] [Full Text] [Related]

  • 16. Evidence against a role for NADPH oxidase modulating hepatic vascular tone in cirrhosis.
    Gracia-Sancho J, Laviña B, Rodríguez-Vilarrupla A, Brandes RP, Fernández M, Bosch J, García-Pagán JC.
    Gastroenterology; 2007 Sep 15; 133(3):959-66. PubMed ID: 17854599
    [Abstract] [Full Text] [Related]

  • 17. NO and PGI(2) in coronary endothelial dysfunction in transgenic mice with dilated cardiomyopathy.
    Drelicharz L, Kozlovski V, Skorka T, Heinze-Paluchowska S, Jasinski A, Gebska A, Guzik T, Olszanecki R, Wojnar L, Mende U, Csanyi G, Chlopicki S.
    Basic Res Cardiol; 2008 Sep 15; 103(5):417-30. PubMed ID: 18431525
    [Abstract] [Full Text] [Related]

  • 18. Letter regarding article by Becker et al, "Hyperhomocysteinemia, a cardiac metabolic disease: role of nitric oxide and the p22phox subunit of NADPH oxidase".
    Antoniades C, Tousoulis D, Stefanadis C.
    Circulation; 2005 Oct 11; 112(15):e266. PubMed ID: 16216970
    [No Abstract] [Full Text] [Related]

  • 19. Sirolimus-induced vascular dysfunction. Increased mitochondrial and nicotinamide adenosine dinucleotide phosphate oxidase-dependent superoxide production and decreased vascular nitric oxide formation.
    Jabs A, Göbel S, Wenzel P, Kleschyov AL, Hortmann M, Oelze M, Daiber A, Münzel T.
    J Am Coll Cardiol; 2008 Jun 03; 51(22):2130-8. PubMed ID: 18510959
    [Abstract] [Full Text] [Related]

  • 20. Endothelin mediates superoxide production and vasoconstriction through activation of NADPH oxidase and uncoupled nitric-oxide synthase in the rat aorta.
    Loomis ED, Sullivan JC, Osmond DA, Pollock DM, Pollock JS.
    J Pharmacol Exp Ther; 2005 Dec 03; 315(3):1058-64. PubMed ID: 16144972
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.