These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
1154 related items for PubMed ID: 15854689
1. A quasi-chemical model for the growth and death of microorganisms in foods by non-thermal and high-pressure processing. Doona CJ, Feeherry FE, Ross EW. Int J Food Microbiol; 2005 Apr 15; 100(1-3):21-32. PubMed ID: 15854689 [Abstract] [Full Text] [Related]
2. A novel approach to predicting microbial inactivation kinetics during high pressure processing. Koseki S, Yamamoto K. Int J Food Microbiol; 2007 May 10; 116(2):275-82. PubMed ID: 17363099 [Abstract] [Full Text] [Related]
3. The mathematical properties of the quasi-chemical model for microorganism growth-death kinetics in foods. Ross EW, Taub IA, Doona CJ, Feeherry FE, Kustin K. Int J Food Microbiol; 2005 Mar 15; 99(2):157-71. PubMed ID: 15734564 [Abstract] [Full Text] [Related]
4. Comparison of primary predictive models to study the growth of Listeria monocytogenes at low temperatures in liquid cultures and selection of fastest growing ribotypes in meat and turkey product slurries. Pal A, Labuza TP, Diez-Gonzalez F. Food Microbiol; 2008 May 15; 25(3):460-70. PubMed ID: 18355671 [Abstract] [Full Text] [Related]
5. Inactivation of Escherichia coli, Listeria monocytogenes and Yersinia enterocolitica in fermented sausages during maturation/storage. Lindqvist R, Lindblad M. Int J Food Microbiol; 2009 Jan 31; 129(1):59-67. PubMed ID: 19064299 [Abstract] [Full Text] [Related]
6. Inactivation kinetics of Listeria monocytogenes by high-pressure processing: pressure and temperature variation. Doona CJ, Feeherry FE, Ross EW, Kustin K. J Food Sci; 2012 Aug 31; 77(8):M458-65. PubMed ID: 22748039 [Abstract] [Full Text] [Related]
7. Fractional differential equations based modeling of microbial survival and growth curves: model development and experimental validation. Kaur A, Takhar PS, Smith DM, Mann JE, Brashears MM. J Food Sci; 2008 Oct 31; 73(8):E403-14. PubMed ID: 19019113 [Abstract] [Full Text] [Related]
8. Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Chen H. Food Microbiol; 2007 May 31; 24(3):197-204. PubMed ID: 17188197 [Abstract] [Full Text] [Related]
9. Temperature governs the inactivation rate of vegetative bacteria under growth-preventing conditions. Ross T, Zhang D, McQuestin OJ. Int J Food Microbiol; 2008 Nov 30; 128(1):129-35. PubMed ID: 18778864 [Abstract] [Full Text] [Related]
10. Behavior of inactivation kinetics of Escherichia coli by dense phase carbon dioxide. Liao H, Zhang Y, Hu X, Liao X, Wu J. Int J Food Microbiol; 2008 Aug 15; 126(1-2):93-7. PubMed ID: 18565607 [Abstract] [Full Text] [Related]
11. Thermal inactivation of Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in breaded pork patties. Osaili TM, Griffis CL, Martin EM, Beard BL, Keener AE, Marcy JA. J Food Sci; 2007 Mar 15; 72(2):M56-61. PubMed ID: 17995843 [Abstract] [Full Text] [Related]
12. Effect of environmental parameters (temperature, pH and a(w)) on the individual cell lag phase and generation time of Listeria monocytogenes. Francois K, Devlieghere F, Standaert AR, Geeraerd AH, Van Impe JF, Debevere J. Int J Food Microbiol; 2006 May 01; 108(3):326-35. PubMed ID: 16488043 [Abstract] [Full Text] [Related]
13. Temperature-assisted pressure inactivation of Listeria monocytogenes in turkey breast meat. Chen H. Int J Food Microbiol; 2007 Jun 10; 117(1):55-60. PubMed ID: 17462773 [Abstract] [Full Text] [Related]
14. The effects of growth temperature and growth phase on the inactivation of Listeria monocytogenes in whole milk subject to high pressure processing. Hayman MM, Anantheswaran RC, Knabel SJ. Int J Food Microbiol; 2007 Apr 10; 115(2):220-6. PubMed ID: 17173999 [Abstract] [Full Text] [Related]
15. Growth kinetics of Listeria monocytogenes in broth and beef frankfurters--determination of lag phase duration and exponential growth rate under isothermal conditions. Huang L. J Food Sci; 2008 Jun 10; 73(5):E235-42. PubMed ID: 18576996 [Abstract] [Full Text] [Related]
16. Modeling the effect of inoculum size and acid adaptation on growth/no growth interface of Escherichia coli O157:H7. Skandamis PN, Stopforth JD, Kendall PA, Belk KE, Scanga JA, Smith GC, Sofos JN. Int J Food Microbiol; 2007 Dec 15; 120(3):237-49. PubMed ID: 17961778 [Abstract] [Full Text] [Related]
17. A predictive model for the influence of food components on survival of Listeria monocytogenes LM 54004 under high hydrostatic pressure and mild heat conditions. Gao YL, Ju XR, Wu-Ding. Int J Food Microbiol; 2007 Jul 15; 117(3):287-94. PubMed ID: 17537535 [Abstract] [Full Text] [Related]
19. Combined physico-chemical and water transfer modelling to predict bacterial growth during food processes. Lebert I, Dussap CG, Lebert A. Int J Food Microbiol; 2005 Jul 25; 102(3):305-22. PubMed ID: 16014298 [Abstract] [Full Text] [Related]
20. Temperature-assisted high hydrostatic pressure inactivation of Staphylococcus aureus in a ham model system: evaluation in selective and nonselective medium. Tassou CC, Panagou EZ, Samaras FJ, Galiatsatou P, Mallidis CG. J Appl Microbiol; 2008 Jun 25; 104(6):1764-73. PubMed ID: 18298540 [Abstract] [Full Text] [Related] Page: [Next] [New Search]