These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
138 related items for PubMed ID: 15855682
1. The isocapnic buffering phase and mechanical efficiency: relationship to cycle time trial performance of short and long duration. Bentley DJ, Vleck VE, Millet GP. Can J Appl Physiol; 2005 Feb; 30(1):46-60. PubMed ID: 15855682 [Abstract] [Full Text] [Related]
2. Comparison of W(peak), VO2(peak) and the ventilation threshold from two different incremental exercise tests: relationship to endurance performance. Bentley DJ, McNaughton LR. J Sci Med Sport; 2003 Dec; 6(4):422-35. PubMed ID: 14723392 [Abstract] [Full Text] [Related]
4. Effects of endurance training on the isocapnic buffering and hypocapnic hyperventilation phases in professional cyclists. Chicharro JL, Hoyos J, Lucía A. Br J Sports Med; 2000 Dec; 34(6):450-5. PubMed ID: 11131234 [Abstract] [Full Text] [Related]
5. Peak power output, the lactate threshold, and time trial performance in cyclists. Bentley DJ, McNaughton LR, Thompson D, Vleck VE, Batterham AM. Med Sci Sports Exerc; 2001 Dec; 33(12):2077-81. PubMed ID: 11740302 [Abstract] [Full Text] [Related]
6. Physiological determinants of the cycling time trial. Støren Ø, Ulevåg K, Larsen MH, Støa EM, Helgerud J. J Strength Cond Res; 2013 Sep; 27(9):2366-73. PubMed ID: 23238091 [Abstract] [Full Text] [Related]
7. Relationship between isocapnic buffering and maximal aerobic capacity in athletes. Oshima Y, Miyamoto T, Tanaka S, Wadazumi T, Kurihara N, Fujimoto S. Eur J Appl Physiol Occup Physiol; 1997 Sep; 76(5):409-14. PubMed ID: 9367280 [Abstract] [Full Text] [Related]
8. Prediction of aerobic and anaerobic capacities of elite cyclists from changes in lactate during isocapnic buffering phase. Hasanli M, Nikooie R, Aveseh M, Mohammad F. J Strength Cond Res; 2015 Feb; 29(2):321-9. PubMed ID: 25144132 [Abstract] [Full Text] [Related]
9. The influence of training status, age, and muscle fiber type on cycling efficiency and endurance performance. Hopker JG, Coleman DA, Gregson HC, Jobson SA, Von der Haar T, Wiles J, Passfield L. J Appl Physiol (1985); 2013 Sep 01; 115(5):723-9. PubMed ID: 23813527 [Abstract] [Full Text] [Related]
14. Determinants of time trial performance and maximal incremental exercise in highly trained endurance athletes. Jacobs RA, Rasmussen P, Siebenmann C, Díaz V, Gassmann M, Pesta D, Gnaiger E, Nordsborg NB, Robach P, Lundby C. J Appl Physiol (1985); 2011 Nov 01; 111(5):1422-30. PubMed ID: 21885805 [Abstract] [Full Text] [Related]
15. Effect of voluntary hypocapnic hyperventilation or moderate hypoxia on metabolic and heart rate responses during high-intensity intermittent exercise. Dobashi K, Fujii N, Watanabe K, Tsuji B, Sasaki Y, Fujimoto T, Tanigawa S, Nishiyasu T. Eur J Appl Physiol; 2017 Aug 01; 117(8):1573-1583. PubMed ID: 28527012 [Abstract] [Full Text] [Related]
16. Allometric scaling of peak power output accurately predicts time trial performance and maximal oxygen consumption in trained cyclists. Lamberts RP, Lambert MI, Swart J, Noakes TD. Br J Sports Med; 2012 Jan 01; 46(1):36-41. PubMed ID: 21821613 [Abstract] [Full Text] [Related]
17. Cycling performance is superior for time-to-exhaustion versus time-trial in endurance laboratory tests. Coakley SL, Passfield L. J Sports Sci; 2018 Jun 01; 36(11):1228-1234. PubMed ID: 28892462 [Abstract] [Full Text] [Related]