These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
113 related items for PubMed ID: 15857127
1. DASH: a novel analysis method for molecular dynamics simulation data. Analysis of ligands of PPAR-gamma. Salt DW, Hudson BD, Banting L, Ellis MJ, Ford MG. J Med Chem; 2005 May 05; 48(9):3214-20. PubMed ID: 15857127 [Abstract] [Full Text] [Related]
2. Structure-based de novo design, synthesis, and biological evaluation of the indole-based PPARgamma ligands (I). Dong X, Zhang Z, Wen R, Shen J, Shen X, Jiang H. Bioorg Med Chem Lett; 2006 Nov 15; 16(22):5913-6. PubMed ID: 17010604 [Abstract] [Full Text] [Related]
3. 2D QSAR of PPARgamma agonist binding and transactivation. Rücker C, Scarsi M, Meringer M. Bioorg Med Chem; 2006 Aug 01; 14(15):5178-95. PubMed ID: 16650995 [Abstract] [Full Text] [Related]
4. Ligand-induced stabilization and activation of peroxisome proliferator-activated receptor gamma. Gani OA, Sylte I. Chem Biol Drug Des; 2008 Jul 01; 72(1):50-7. PubMed ID: 18554251 [Abstract] [Full Text] [Related]
5. Protein polarization is critical to stabilizing AF-2 and helix-2' domains in ligand binding to PPAR-gamma. Ji CG, Zhang JZ. J Am Chem Soc; 2008 Dec 17; 130(50):17129-33. PubMed ID: 19007119 [Abstract] [Full Text] [Related]
6. Design, synthesis, and biological activity of novel PPARgamma ligands based on rosiglitazone and 15d-PGJ2. Usui S, Suzuki T, Hattori Y, Etoh K, Fujieda H, Nishizuka M, Imagawa M, Nakagawa H, Kohda K, Miyata N. Bioorg Med Chem Lett; 2005 Mar 15; 15(6):1547-51. PubMed ID: 15745794 [Abstract] [Full Text] [Related]
7. Computational sampling of a cryptic drug binding site in a protein receptor: explicit solvent molecular dynamics and inhibitor docking to p38 MAP kinase. Frembgen-Kesner T, Elcock AH. J Mol Biol; 2006 May 26; 359(1):202-14. PubMed ID: 16616932 [Abstract] [Full Text] [Related]
8. Structural insight into PPARgamma activation through covalent modification with endogenous fatty acids. Waku T, Shiraki T, Oyama T, Fujimoto Y, Maebara K, Kamiya N, Jingami H, Morikawa K. J Mol Biol; 2009 Jan 09; 385(1):188-99. PubMed ID: 18977231 [Abstract] [Full Text] [Related]
9. Indol-1-yl acetic acids as peroxisome proliferator-activated receptor agonists: design, synthesis, structural biology, and molecular docking studies. Mahindroo N, Wang CC, Liao CC, Huang CF, Lu IL, Lien TW, Peng YH, Huang WJ, Lin YT, Hsu MC, Lin CH, Tsai CH, Hsu JT, Chen X, Lyu PC, Chao YS, Wu SY, Hsieh HP. J Med Chem; 2006 Feb 09; 49(3):1212-6. PubMed ID: 16451087 [Abstract] [Full Text] [Related]
10. Conformational and dynamics changes induced by bile acids binding to chicken liver bile acid binding protein. Eberini I, Guerini Rocco A, Ientile AR, Baptista AM, Gianazza E, Tomaselli S, Molinari H, Ragona L. Proteins; 2008 Jun 09; 71(4):1889-98. PubMed ID: 18175325 [Abstract] [Full Text] [Related]
11. The dipeptide H-Trp-Glu-OH shows highly antagonistic activity against PPARgamma: bioassay with molecular modeling simulation. Ye F, Zhang ZS, Luo HB, Shen JH, Chen KX, Shen X, Jiang HL. Chembiochem; 2006 Jan 09; 7(1):74-82. PubMed ID: 16317783 [Abstract] [Full Text] [Related]
12. Design and structural analysis of novel pharmacophores for potent and selective peroxisome proliferator-activated receptor gamma agonists. Lin CH, Peng YH, Coumar MS, Chittimalla SK, Liao CC, Lyn PC, Huang CC, Lien TW, Lin WH, Hsu JT, Cheng JH, Chen X, Wu JS, Chao YS, Lee HJ, Juo CG, Wu SY, Hsieh HP. J Med Chem; 2009 Apr 23; 52(8):2618-22. PubMed ID: 19301897 [Abstract] [Full Text] [Related]
13. Effect of input differences on the results of docking calculations. Feher M, Williams CI. J Chem Inf Model; 2009 Jul 23; 49(7):1704-14. PubMed ID: 19530660 [Abstract] [Full Text] [Related]
14. Targacept active conformation search: a new method for predicting the conformation of a ligand bound to its protein target. Klucik J, Xiao YD, Hammond PS, Harris R, Schmitt JD. J Med Chem; 2004 Dec 30; 47(27):6831-9. PubMed ID: 15615532 [Abstract] [Full Text] [Related]
15. Structure-based drug design of a novel family of PPARgamma partial agonists: virtual screening, X-ray crystallography, and in vitro/in vivo biological activities. Lu IL, Huang CF, Peng YH, Lin YT, Hsieh HP, Chen CT, Lien TW, Lee HJ, Mahindroo N, Prakash E, Yueh A, Chen HY, Goparaju CM, Chen X, Liao CC, Chao YS, Hsu JT, Wu SY. J Med Chem; 2006 May 04; 49(9):2703-12. PubMed ID: 16640330 [Abstract] [Full Text] [Related]
16. Additivity of molecular fields: CoMFA study on dual activators of PPARalpha and PPARgamma. Khanna S, Sobhia ME, Bharatam PV. J Med Chem; 2005 Apr 21; 48(8):3015-25. PubMed ID: 15828840 [Abstract] [Full Text] [Related]
17. Automated ligand placement and refinement with a combined force field and shape potential. Wlodek S, Skillman AG, Nicholls A. Acta Crystallogr D Biol Crystallogr; 2006 Jul 21; 62(Pt 7):741-9. PubMed ID: 16790930 [Abstract] [Full Text] [Related]
18. Structural requirement for PPARgamma binding revealed by a meta analysis of holo-crystal structures. Nascimento AS. Biochimie; 2010 May 21; 92(5):499-506. PubMed ID: 20138109 [Abstract] [Full Text] [Related]
19. Binding interaction analysis of the active site and its inhibitors for neuraminidase (N1 subtype) of human influenza virus by the integration of molecular docking, FMO calculation and 3D-QSAR CoMFA modeling. Zhang Q, Yang J, Liang K, Feng L, Li S, Wan J, Xu X, Yang G, Liu D, Yang S. J Chem Inf Model; 2008 Sep 21; 48(9):1802-12. PubMed ID: 18707092 [Abstract] [Full Text] [Related]
20. Overcoming the inadequacies or limitations of experimental structures as drug targets by using computational modeling tools and molecular dynamics simulations. Marco E, Gago F. ChemMedChem; 2007 Oct 21; 2(10):1388-401. PubMed ID: 17806089 [Abstract] [Full Text] [Related] Page: [Next] [New Search]