These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


265 related items for PubMed ID: 15857765

  • 1. Hydrolysis of pyrethroids by carboxylesterases from Lucilia cuprina and Drosophila melanogaster with active sites modified by in vitro mutagenesis.
    Heidari R, Devonshire AL, Campbell BE, Dorrian SJ, Oakeshott JG, Russell RJ.
    Insect Biochem Mol Biol; 2005 Jun; 35(6):597-609. PubMed ID: 15857765
    [Abstract] [Full Text] [Related]

  • 2. Hydrolysis of organophosphorus insecticides by in vitro modified carboxylesterase E3 from Lucilia cuprina.
    Heidari R, Devonshire AL, Campbell BE, Bell KL, Dorrian SJ, Oakeshott JG, Russell RJ.
    Insect Biochem Mol Biol; 2004 Apr; 34(4):353-63. PubMed ID: 15041019
    [Abstract] [Full Text] [Related]

  • 3. Hydrolysis of individual isomers of fluorogenic pyrethroid analogs by mutant carboxylesterases from Lucilia cuprina.
    Devonshire AL, Heidari R, Huang HZ, Hammock BD, Russell RJ, Oakeshott JG.
    Insect Biochem Mol Biol; 2007 Sep; 37(9):891-902. PubMed ID: 17681228
    [Abstract] [Full Text] [Related]

  • 4. Hydrolytic metabolism of pyrethroids by human and other mammalian carboxylesterases.
    Ross MK, Borazjani A, Edwards CC, Potter PM.
    Biochem Pharmacol; 2006 Feb 28; 71(5):657-69. PubMed ID: 16387282
    [Abstract] [Full Text] [Related]

  • 5. Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic pyrethroid insecticides.
    Coppin CW, Jackson CJ, Sutherland T, Hart PJ, Devonshire AL, Russell RJ, Oakeshott JG.
    Insect Biochem Mol Biol; 2012 May 28; 42(5):343-52. PubMed ID: 22300675
    [Abstract] [Full Text] [Related]

  • 6. Mutations of the para sodium channel of Drosophila melanogaster identify putative binding sites for pyrethroids.
    Vais H, Atkinson S, Pluteanu F, Goodson SJ, Devonshire AL, Williamson MS, Usherwood PN.
    Mol Pharmacol; 2003 Oct 28; 64(4):914-22. PubMed ID: 14500748
    [Abstract] [Full Text] [Related]

  • 7. The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina.
    Chen Z, Newcomb R, Forbes E, McKenzie J, Batterham P.
    Insect Biochem Mol Biol; 2001 Jun 22; 31(8):805-16. PubMed ID: 11378416
    [Abstract] [Full Text] [Related]

  • 8. Hydrolysis of pyrethroids by human and rat tissues: examination of intestinal, liver and serum carboxylesterases.
    Crow JA, Borazjani A, Potter PM, Ross MK.
    Toxicol Appl Pharmacol; 2007 May 15; 221(1):1-12. PubMed ID: 17442360
    [Abstract] [Full Text] [Related]

  • 9. Biochemistry of esterases associated with organophosphate resistance in Lucilia cuprina with comparisons to putative orthologues in other Diptera.
    Campbell PM, Trott JF, Claudianos C, Smyth KA, Russell RJ, Oakeshott JG.
    Biochem Genet; 1997 Feb 15; 35(1-2):17-40. PubMed ID: 9238516
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. cDNA cloning, baculovirus-expression and kinetic properties of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina.
    Newcomb RD, Campbell PM, Russell RJ, Oakeshott JG.
    Insect Biochem Mol Biol; 1997 Jan 15; 27(1):15-25. PubMed ID: 9061925
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Stereoselective hydrolysis of pyrethroid-like fluorescent substrates by human and other mammalian liver carboxylesterases.
    Huang H, Fleming CD, Nishi K, Redinbo MR, Hammock BD.
    Chem Res Toxicol; 2005 Sep 15; 18(9):1371-7. PubMed ID: 16167828
    [Abstract] [Full Text] [Related]

  • 14. Identification, expression, and purification of a pyrethroid-hydrolyzing carboxylesterase from mouse liver microsomes.
    Stok JE, Huang H, Jones PD, Wheelock CE, Morisseau C, Hammock BD.
    J Biol Chem; 2004 Jul 09; 279(28):29863-9. PubMed ID: 15123619
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Only one esterase of Drosophila melanogaster is likely to degrade juvenile hormone in vivo.
    Crone EJ, Sutherland TD, Campbell PM, Coppin CW, Russell RJ, Oakeshott JG.
    Insect Biochem Mol Biol; 2007 Jun 09; 37(6):540-9. PubMed ID: 17517331
    [Abstract] [Full Text] [Related]

  • 17. Insect detoxifying enzymes: their importance in pesticide synergism and resistance.
    Ishaaya I.
    Arch Insect Biochem Physiol; 1993 Jun 09; 22(1-2):263-76. PubMed ID: 8431600
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Human carboxylesterases HCE1 and HCE2: ontogenic expression, inter-individual variability and differential hydrolysis of oseltamivir, aspirin, deltamethrin and permethrin.
    Yang D, Pearce RE, Wang X, Gaedigk R, Wan YJ, Yan B.
    Biochem Pharmacol; 2009 Jan 15; 77(2):238-47. PubMed ID: 18983829
    [Abstract] [Full Text] [Related]

  • 20. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects.
    Cui F, Lin Z, Wang H, Liu S, Chang H, Reeck G, Qiao C, Raymond M, Kang L.
    Insect Biochem Mol Biol; 2011 Jan 15; 41(1):1-8. PubMed ID: 20888910
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.