These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Engineering craniofacial scaffolds. Hollister SJ, Lin CY, Saito E, Lin CY, Schek RD, Taboas JM, Williams JM, Partee B, Flanagan CL, Diggs A, Wilke EN, Van Lenthe GH, Müller R, Wirtz T, Das S, Feinberg SE, Krebsbach PH. Orthod Craniofac Res; 2005 Aug; 8(3):162-73. PubMed ID: 16022718 [Abstract] [Full Text] [Related]
6. In vitro and in vivo characteristics of PCL scaffolds with pore size gradient fabricated by a centrifugation method. Oh SH, Park IK, Kim JM, Lee JH. Biomaterials; 2007 Mar; 28(9):1664-71. PubMed ID: 17196648 [Abstract] [Full Text] [Related]
7. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering. Kong L, Ao Q, Wang A, Gong K, Wang X, Lu G, Gong Y, Zhao N, Zhang X. J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157 [Abstract] [Full Text] [Related]
8. The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. Jones AC, Arns CH, Hutmacher DW, Milthorpe BK, Sheppard AP, Knackstedt MA. Biomaterials; 2009 Mar; 30(7):1440-51. PubMed ID: 19091398 [Abstract] [Full Text] [Related]
9. Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, Kassem M, Bünger C. Biomaterials; 2007 Feb; 28(6):1036-47. PubMed ID: 17081601 [Abstract] [Full Text] [Related]
11. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering. Jansen EJ, Sladek RE, Bahar H, Yaffe A, Gijbels MJ, Kuijer R, Bulstra SK, Guldemond NA, Binderman I, Koole LH. Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371 [Abstract] [Full Text] [Related]
12. The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Cyster LA, Grant DM, Howdle SM, Rose FR, Irvine DJ, Freeman D, Scotchford CA, Shakesheff KM. Biomaterials; 2005 Mar; 26(7):697-702. PubMed ID: 15350773 [Abstract] [Full Text] [Related]
13. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Li JP, Habibovic P, van den Doel M, Wilson CE, de Wijn JR, van Blitterswijk CA, de Groot K. Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852 [Abstract] [Full Text] [Related]
14. Influence of macroporous protein scaffolds on bone tissue engineering from bone marrow stem cells. Kim HJ, Kim UJ, Vunjak-Novakovic G, Min BH, Kaplan DL. Biomaterials; 2005 Jul; 26(21):4442-52. PubMed ID: 15701373 [Abstract] [Full Text] [Related]
15. Manufacture of degradable polymeric scaffolds for bone regeneration. Ge Z, Jin Z, Cao T. Biomed Mater; 2008 Jun; 3(2):022001. PubMed ID: 18523339 [Abstract] [Full Text] [Related]
16. The effect of pore size on cell adhesion in collagen-GAG scaffolds. O'Brien FJ, Harley BA, Yannas IV, Gibson LJ. Biomaterials; 2005 Feb; 26(4):433-41. PubMed ID: 15275817 [Abstract] [Full Text] [Related]
17. Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL. Biomaterials; 2005 May; 26(15):2775-85. PubMed ID: 15585282 [Abstract] [Full Text] [Related]