These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


753 related items for PubMed ID: 15862875

  • 1. Development of an integrated model for heat transfer and dynamic growth of Clostridium perfringens during the cooling of cooked boneless ham.
    Amézquita A, Weller CL, Wang L, Thippareddi H, Burson DE.
    Int J Food Microbiol; 2005 May 25; 101(2):123-44. PubMed ID: 15862875
    [Abstract] [Full Text] [Related]

  • 2. Predictive model for growth of Clostridium perfringens in cooked cured pork.
    Juneja VK, Huang L, Thippareddi HH.
    Int J Food Microbiol; 2006 Jul 01; 110(1):85-92. PubMed ID: 16697066
    [Abstract] [Full Text] [Related]

  • 3. Predictive model for growth of Clostridium perfringens during cooling of cooked uncured meat and poultry.
    Juneja VK, Marks H, Huang L, Thippareddi H.
    Food Microbiol; 2011 Jun 01; 28(4):791-5. PubMed ID: 21511140
    [Abstract] [Full Text] [Related]

  • 4. Predictive model for growth of Clostridium perfringens during cooling of cooked uncured beef.
    Juneja VK, Marks H, Thippareddi H.
    Food Microbiol; 2008 Feb 01; 25(1):42-55. PubMed ID: 17993376
    [Abstract] [Full Text] [Related]

  • 5. Impact of cooking, cooling, and subsequent refrigeration on the growth or survival of Clostridium perfringens in cooked meat and poultry products.
    Kalinowski RM, Tompkin RB, Bodnaruk PW, Pruett WP.
    J Food Prot; 2003 Jul 01; 66(7):1227-32. PubMed ID: 12870757
    [Abstract] [Full Text] [Related]

  • 6. Modeling and predicting non-isothermal microbial growth using general purpose software.
    Corradini MG, Amézquita A, Normand MD, Peleg M.
    Int J Food Microbiol; 2006 Feb 01; 106(2):223-8. PubMed ID: 16226331
    [Abstract] [Full Text] [Related]

  • 7. Evaluating the Performance of a New Model for Predicting the Growth of Clostridium perfringens in Cooked, Uncured Meat and Poultry Products under Isothermal, Heating, and Dynamically Cooling Conditions.
    Huang L.
    J Food Sci; 2016 Jul 01; 81(7):M1754-65. PubMed ID: 27259065
    [Abstract] [Full Text] [Related]

  • 8. Modelling the growth of Clostridium perfringens during the cooling of bulk meat.
    Le Marc Y, Plowman J, Aldus CF, Munoz-Cuevas M, Baranyi J, Peck MW.
    Int J Food Microbiol; 2008 Nov 30; 128(1):41-50. PubMed ID: 18768233
    [Abstract] [Full Text] [Related]

  • 9. Bayesian modeling of Clostridium perfringens growth in beef-in-sauce products.
    Jaloustre S, Cornu M, Morelli E, Noël V, Delignette-Muller ML.
    Food Microbiol; 2011 Apr 30; 28(2):311-20. PubMed ID: 21315989
    [Abstract] [Full Text] [Related]

  • 10. Potential for growth of Clostridium perfringens from spores in pork scrapple during cooling.
    Juneja VK, Porto-Fett AC, Gartner K, Tufft L, Luchansky JB.
    Foodborne Pathog Dis; 2010 Feb 30; 7(2):153-7. PubMed ID: 19785539
    [Abstract] [Full Text] [Related]

  • 11. Alternative cooling procedures for large, intact meat products to achieve stabilization microbiological performance standards.
    Haneklaus AN, Harris KB, Márquez-González M, Lucia LM, Castillo A, Hardin MD, Osburn WN, Savell JW.
    J Food Prot; 2011 Jan 30; 74(1):101-5. PubMed ID: 21219768
    [Abstract] [Full Text] [Related]

  • 12. Predicting outgrowth and inactivation of Clostridium perfringens in meat products during low temperature long time heat treatment.
    Duan Z, Hansen TH, Hansen TB, Dalgaard P, Knøchel S.
    Int J Food Microbiol; 2016 Aug 02; 230():45-57. PubMed ID: 27127839
    [Abstract] [Full Text] [Related]

  • 13. Influence of NaCl content and cooling rate on outgrowth of Clostridium perfringens spores in cooked ham and beef.
    Zaika LL.
    J Food Prot; 2003 Sep 02; 66(9):1599-603. PubMed ID: 14503712
    [Abstract] [Full Text] [Related]

  • 14. A new predictive dynamic model describing the effect of the ambient temperature and the convective heat transfer coefficient on bacterial growth.
    Ben Yaghlene H, Leguerinel I, Hamdi M, Mafart P.
    Int J Food Microbiol; 2009 Jul 31; 133(1-2):48-61. PubMed ID: 19447512
    [Abstract] [Full Text] [Related]

  • 15. Dynamic computer simulation of Clostridium perfringens growth in cooked ground beef.
    Huang L.
    Int J Food Microbiol; 2003 Nov 01; 87(3):217-27. PubMed ID: 14527794
    [Abstract] [Full Text] [Related]

  • 16. Management of microbiological safety of ready-to-eat meat products by mathematical modelling: Listeria monocytogenes as an example.
    Carrasco E, Valero A, Pérez-Rodríguez F, García-Gimeno RM, Zurera G.
    Int J Food Microbiol; 2007 Mar 10; 114(2):221-6. PubMed ID: 17140689
    [Abstract] [Full Text] [Related]

  • 17. Direct Dynamic Kinetic Analysis and Computer Simulation of Growth of Clostridium perfringens in Cooked Turkey during Cooling.
    Huang L, Vinyard BT.
    J Food Sci; 2016 Mar 10; 81(3):M692-701. PubMed ID: 26801359
    [Abstract] [Full Text] [Related]

  • 18. Estimating microbial growth parameters from non-isothermal data: a case study with Clostridium perfringens.
    Smith-Simpson S, Corradini MG, Normand MD, Peleg M, Schaffner DW.
    Int J Food Microbiol; 2007 Sep 30; 118(3):294-303. PubMed ID: 17804106
    [Abstract] [Full Text] [Related]

  • 19. Risk profiles of pork and poultry meat and risk ratings of various pathogen/product combinations.
    Mataragas M, Skandamis PN, Drosinos EH.
    Int J Food Microbiol; 2008 Aug 15; 126(1-2):1-12. PubMed ID: 18602180
    [Abstract] [Full Text] [Related]

  • 20. Inhibition of Clostridium perfringens spore germination and outgrowth by lemon juice and vinegar product in reduced NaCl roast beef.
    Li L, Valenzuela-Martinez C, Redondo M, Juneja VK, Burson DE, Thippareddi H.
    J Food Sci; 2012 Nov 15; 77(11):M598-603. PubMed ID: 23163907
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 38.