These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


261 related items for PubMed ID: 15865444

  • 1. Comprehensive identification of post-translational modifications of rat bone osteopontin by mass spectrometry.
    Keykhosravani M, Doherty-Kirby A, Zhang C, Brewer D, Goldberg HA, Hunter GK, Lajoie G.
    Biochemistry; 2005 May 10; 44(18):6990-7003. PubMed ID: 15865444
    [Abstract] [Full Text] [Related]

  • 2. Posttranslational modifications of bovine osteopontin: identification of twenty-eight phosphorylation and three O-glycosylation sites.
    Sørensen ES, Højrup P, Petersen TE.
    Protein Sci; 1995 Oct 10; 4(10):2040-9. PubMed ID: 8535240
    [Abstract] [Full Text] [Related]

  • 3. Molecular mass determination of plasma-derived glycoproteins by ultraviolet matrix-assisted laser desorption/ionization time-of-flight mass spectrometry with internal calibration.
    Belgacem O, Buchacher A, Pock K, Josic D, Sutton C, Rizzi A, Allmaier G.
    J Mass Spectrom; 2002 Nov 10; 37(11):1118-30. PubMed ID: 12447888
    [Abstract] [Full Text] [Related]

  • 4. Methods in enzymology: O-glycosylation of proteins.
    Peter-Katalinić J.
    Methods Enzymol; 2005 Nov 10; 405():139-71. PubMed ID: 16413314
    [Abstract] [Full Text] [Related]

  • 5. Post-translational modification and proteolytic processing of urinary osteopontin.
    Christensen B, Petersen TE, Sørensen ES.
    Biochem J; 2008 Apr 01; 411(1):53-61. PubMed ID: 18072945
    [Abstract] [Full Text] [Related]

  • 6. N-Glycan structures of an osteopontin from human bone.
    Masuda K, Takahashi N, Tsukamoto Y, Honma H, Kohri K.
    Biochem Biophys Res Commun; 2000 Feb 24; 268(3):814-7. PubMed ID: 10679288
    [Abstract] [Full Text] [Related]

  • 7. Site-specific N-glycan characterization of human complement factor H.
    Fenaille F, Le Mignon M, Groseil C, Ramon C, Riandé S, Siret L, Bihoreau N.
    Glycobiology; 2007 Sep 24; 17(9):932-44. PubMed ID: 17591618
    [Abstract] [Full Text] [Related]

  • 8. Application of mass spectrometry for the detection of glycation and oxidation products in milk proteins.
    Meltretter J, Pischetsrieder M.
    Ann N Y Acad Sci; 2008 Apr 24; 1126():134-40. PubMed ID: 18448807
    [Abstract] [Full Text] [Related]

  • 9. Post-translational modifications on proteins: facile and efficient procedure for the identification of O-glycosylation sites by MALDI-LIFT-TOF/TOF mass spectrometry.
    Kurogochi M, Matsushita T, Nishimura S.
    Angew Chem Int Ed Engl; 2004 Aug 06; 43(31):4071-5. PubMed ID: 15300698
    [No Abstract] [Full Text] [Related]

  • 10. Capillary liquid chromatography/atmospheric-pressure matrix-assisted laser desorption/ionisation ion trap mass spectrometry: a comparison with liquid chromatography/matrix-assisted laser desorption/ionisation time-of-flight and liquid chromatography/electrospray ionisation quadrupole time-of-flight for the identification of tryptic peptides.
    Creaser CS, Green PS, Kilby PM, Ratcliffe L.
    Rapid Commun Mass Spectrom; 2006 Aug 06; 20(5):829-36. PubMed ID: 16470569
    [Abstract] [Full Text] [Related]

  • 11. Post-translationally modified residues of native human osteopontin are located in clusters: identification of 36 phosphorylation and five O-glycosylation sites and their biological implications.
    Christensen B, Nielsen MS, Haselmann KF, Petersen TE, Sørensen ES.
    Biochem J; 2005 Aug 15; 390(Pt 1):285-92. PubMed ID: 15869464
    [Abstract] [Full Text] [Related]

  • 12. In vivo and in vitro phosphorylation regions of bone sialoprotein.
    Salih E.
    Connect Tissue Res; 2003 Aug 15; 44 Suppl 1():223-9. PubMed ID: 12952202
    [Abstract] [Full Text] [Related]

  • 13. Determination of the post-translational modifications of salivary acidic proline-rich proteins.
    Castagnola M, Cabras T, Inzitari R, Zuppi C, Rossetti DV, Petruzzelli R, Vitali A, Loy F, Conti G, Fadda MB.
    Eur J Morphol; 2003 Apr 15; 41(2):93-8. PubMed ID: 15621862
    [Abstract] [Full Text] [Related]

  • 14. Comparison of different separation technologies for proteome analyses: isoform resolution as a prerequisite for the definition of protein biomarkers on the level of posttranslational modifications.
    Hunzinger C, Schrattenholz A, Poznanović S, Schwall GP, Stegmann W.
    J Chromatogr A; 2006 Aug 11; 1123(2):170-81. PubMed ID: 16822517
    [Abstract] [Full Text] [Related]

  • 15. Protein posttranslational modifications: phosphorylation site analysis using mass spectrometry.
    Annan RS, Zappacosta F.
    Methods Biochem Anal; 2005 Aug 11; 45():85-106. PubMed ID: 19235292
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry.
    Trimpin S, Mixon AE, Stapels MD, Kim MY, Spencer PS, Deinzer ML.
    Biochemistry; 2004 Feb 24; 43(7):2091-105. PubMed ID: 14967049
    [Abstract] [Full Text] [Related]

  • 19. Electrospray ionization quadrupole time-of-flight and matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometric analyses to solve micro-heterogeneity in post-translationally modified peptides from Phoneutria nigriventer (Aranea, Ctenidae) venom.
    Pimenta AM, Rates B, Bloch C, Gomes PC, Santoro MM, de Lima ME, Richardson M, Cordeiro Mdo N.
    Rapid Commun Mass Spectrom; 2005 Feb 24; 19(1):31-7. PubMed ID: 15573368
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.