These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
289 related items for PubMed ID: 15866536
1. Metal-catalyzed oxidation reactions and mass spectrometry: the roles of ascorbate and different oxidizing agents in determining Cu-protein-binding sites. Bridgewater JD, Vachet RW. Anal Biochem; 2005 Jun 01; 341(1):122-30. PubMed ID: 15866536 [Abstract] [Full Text] [Related]
2. Products of Cu(II)-catalyzed oxidation of alpha-synuclein fragments containing M1-D2 and H50 residues in the presence of hydrogen peroxide. Kowalik-Jankowska T, Rajewska A, Jankowska E, Grzonka Z. Dalton Trans; 2008 Feb 14; (6):832-8. PubMed ID: 18239841 [Abstract] [Full Text] [Related]
3. Characterization of the metal-binding site of human prolactin by site-specific metal-catalyzed oxidation. Sadineni V, Galeva NA, Schöneich C. Anal Biochem; 2006 Nov 15; 358(2):208-15. PubMed ID: 17010299 [Abstract] [Full Text] [Related]
4. Using mass spectrometry to study copper-protein binding under native and non-native conditions: beta-2-microglobulin. Lim J, Vachet RW. Anal Chem; 2004 Jul 01; 76(13):3498-504. PubMed ID: 15228316 [Abstract] [Full Text] [Related]
5. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P, Saxena AK, Cui XL, Obrenovich M, Gudipaty K, Monnier VM. Invest Ophthalmol Vis Sci; 2000 May 01; 41(6):1473-81. PubMed ID: 10798665 [Abstract] [Full Text] [Related]
6. Using microwave-assisted metal-catalyzed oxidation reactions and mass spectrometry to increase the rate at which the copper-binding sites of a protein are determined. Bridgewater JD, Vachet RW. Anal Chem; 2005 Jul 15; 77(14):4649-53. PubMed ID: 16013884 [Abstract] [Full Text] [Related]
7. Using metal-catalyzed oxidation reactions and mass spectrometry to identify amino acid residues within 10 A of the metal in Cu-binding proteins. Bridgewater JD, Lim J, Vachet RW. J Am Soc Mass Spectrom; 2006 Nov 15; 17(11):1552-9. PubMed ID: 16872838 [Abstract] [Full Text] [Related]
8. Characterization of the metal-binding site of bovine growth hormone through site-specific metal-catalyzed oxidation and high-performance liquid chromatography-tandem mass spectrometry. Hovorka SW, Williams TD, Schöneich C. Anal Biochem; 2002 Jan 15; 300(2):206-11. PubMed ID: 11779112 [Abstract] [Full Text] [Related]
9. Development of a methodology based on metal-catalyzed oxidation reactions and mass spectrometry to determine the metal binding sites in copper metalloproteins. Lim J, Vachet RW. Anal Chem; 2003 Mar 01; 75(5):1164-72. PubMed ID: 12641237 [Abstract] [Full Text] [Related]
10. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase. Paksi Z, Jancsó A, Pacello F, Nagy N, Battistoni A, Gajda T. J Inorg Biochem; 2008 Sep 01; 102(9):1700-10. PubMed ID: 18565588 [Abstract] [Full Text] [Related]
11. Coordination abilities of a fragment containing D1 and H12 residues of neuropeptide gamma and products of metal-catalyzed oxidation. Kowalik-Jankowska T, Jankowska E, Kasprzykowski F. Inorg Chem; 2010 Mar 01; 49(5):2182-92. PubMed ID: 20121248 [Abstract] [Full Text] [Related]
13. Products of Cu(II)-catalyzed oxidation of the N-terminal fragments of alpha-synuclein in the presence of hydrogen peroxide. Kowalik-Jankowska T, Rajewska A, Jankowska E, Wiśniewska K, Grzonka Z. J Inorg Biochem; 2006 Oct 01; 100(10):1623-31. PubMed ID: 16839607 [Abstract] [Full Text] [Related]
14. Complexation abilities of neuropeptide gamma toward copper(II) ions and products of metal-catalyzed oxidation. Pietruszka M, Jankowska E, Kowalik-Jankowska T, Szewczuk Z, Smużyńska M. Inorg Chem; 2011 Aug 15; 50(16):7489-99. PubMed ID: 21770367 [Abstract] [Full Text] [Related]
15. Chemical nature of stochastic generation of protein-based carbonyls: metal-catalyzed oxidation versus modification by products of lipid oxidation. Yuan Q, Zhu X, Sayre LM. Chem Res Toxicol; 2007 Jan 15; 20(1):129-39. PubMed ID: 17226935 [Abstract] [Full Text] [Related]
16. Catalytic and structural role of a metal-free histidine residue in bovine Cu-Zn superoxide dismutase. Toyama A, Takahashi Y, Takeuchi H. Biochemistry; 2004 Apr 27; 43(16):4670-9. PubMed ID: 15096035 [Abstract] [Full Text] [Related]
17. Copper-binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of hydrogen peroxide. Multhaup G, Ruppert T, Schlicksupp A, Hesse L, Bill E, Pipkorn R, Masters CL, Beyreuther K. Biochemistry; 1998 May 19; 37(20):7224-30. PubMed ID: 9585534 [Abstract] [Full Text] [Related]
18. Crystallographic structures of bovine copper-zinc superoxide dismutase reveal asymmetry in two subunits: functionally important three and five coordinate copper sites captured in the same crystal. Hough MA, Hasnain SS. J Mol Biol; 1999 Apr 02; 287(3):579-92. PubMed ID: 10092461 [Abstract] [Full Text] [Related]
19. Thiamine oxidative transformations catalyzed by copper ions and ascorbic acid. Stepuro II, Piletskaya TP, Stepuro VI, Maskevich SA. Biochemistry (Mosc); 1997 Dec 02; 62(12):1409-14. PubMed ID: 9481873 [Abstract] [Full Text] [Related]
20. Pro-oxidant activity of histatin 5 related Cu(II)-model peptide probed by mass spectrometry. Cabras T, Patamia M, Melino S, Inzitari R, Messana I, Castagnola M, Petruzzelli R. Biochem Biophys Res Commun; 2007 Jun 22; 358(1):277-84. PubMed ID: 17482573 [Abstract] [Full Text] [Related] Page: [Next] [New Search]