These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


454 related items for PubMed ID: 15867159

  • 1. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo.
    Noble W, Planel E, Zehr C, Olm V, Meyerson J, Suleman F, Gaynor K, Wang L, LaFrancois J, Feinstein B, Burns M, Krishnamurthy P, Wen Y, Bhat R, Lewis J, Dickson D, Duff K.
    Proc Natl Acad Sci U S A; 2005 May 10; 102(19):6990-5. PubMed ID: 15867159
    [Abstract] [Full Text] [Related]

  • 2. Chronic lithium administration to FTDP-17 tau and GSK-3beta overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert.
    Engel T, Goñi-Oliver P, Lucas JJ, Avila J, Hernández F.
    J Neurochem; 2006 Dec 10; 99(6):1445-55. PubMed ID: 17059563
    [Abstract] [Full Text] [Related]

  • 3. Efficacy of a novel, orally active GSK-3 inhibitor 6-Methyl-N-[3-[[3-(1-methylethoxy)propyl]carbamoyl]-1H-pyrazol-4-yl]pyridine-3-carboxamide in tau transgenic mice.
    Uno Y, Iwashita H, Tsukamoto T, Uchiyama N, Kawamoto T, Kori M, Nakanishi A.
    Brain Res; 2009 Nov 03; 1296():148-63. PubMed ID: 19698704
    [Abstract] [Full Text] [Related]

  • 4. Inhibition of glycogen synthase kinase-3beta downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A.
    Martin L, Magnaudeix A, Esclaire F, Yardin C, Terro F.
    Brain Res; 2009 Feb 03; 1252():66-75. PubMed ID: 19071093
    [Abstract] [Full Text] [Related]

  • 5. Temsirolimus attenuates tauopathy in vitro and in vivo by targeting tau hyperphosphorylation and autophagic clearance.
    Jiang T, Yu JT, Zhu XC, Zhang QQ, Cao L, Wang HF, Tan MS, Gao Q, Qin H, Zhang YD, Tan L.
    Neuropharmacology; 2014 Oct 03; 85():121-30. PubMed ID: 24880087
    [Abstract] [Full Text] [Related]

  • 6. Long-term oral lithium treatment attenuates motor disturbance in tauopathy model mice: implications of autophagy promotion.
    Shimada K, Motoi Y, Ishiguro K, Kambe T, Matsumoto SE, Itaya M, Kunichika M, Mori H, Shinohara A, Chiba M, Mizuno Y, Ueno T, Hattori N.
    Neurobiol Dis; 2012 Apr 03; 46(1):101-8. PubMed ID: 22249108
    [Abstract] [Full Text] [Related]

  • 7. Efficacy of small-molecule glycogen synthase kinase-3 inhibitors in the postnatal rat model of tau hyperphosphorylation.
    Selenica ML, Jensen HS, Larsen AK, Pedersen ML, Helboe L, Leist M, Lotharius J.
    Br J Pharmacol; 2007 Nov 03; 152(6):959-79. PubMed ID: 17906685
    [Abstract] [Full Text] [Related]

  • 8. Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer's disease, Pick's disease, progressive supranuclear palsy and corticobasal degeneration.
    Ferrer I, Barrachina M, Puig B.
    Acta Neuropathol; 2002 Dec 03; 104(6):583-91. PubMed ID: 12410379
    [Abstract] [Full Text] [Related]

  • 9. Chronic lithium treatment decreases tau lesions by promoting ubiquitination in a mouse model of tauopathies.
    Nakashima H, Ishihara T, Suguimoto P, Yokota O, Oshima E, Kugo A, Terada S, Hamamura T, Trojanowski JQ, Lee VM, Kuroda S.
    Acta Neuropathol; 2005 Dec 03; 110(6):547-56. PubMed ID: 16228182
    [Abstract] [Full Text] [Related]

  • 10. Screening of tau protein kinase inhibitors in a tauopathy-relevant cell-based model of tau hyperphosphorylation and oligomerization.
    Yadikar H, Torres I, Aiello G, Kurup M, Yang Z, Lin F, Kobeissy F, Yost R, Wang KK.
    PLoS One; 2020 Dec 03; 15(7):e0224952. PubMed ID: 32692785
    [Abstract] [Full Text] [Related]

  • 11. Lithium inhibits neurite growth and tau protein kinase I/glycogen synthase kinase-3beta-dependent phosphorylation of juvenile tau in cultured hippocampal neurons.
    Takahashi M, Yasutake K, Tomizawa K.
    J Neurochem; 1999 Nov 03; 73(5):2073-83. PubMed ID: 10537067
    [Abstract] [Full Text] [Related]

  • 12. Role of glycogen synthase kinase-3 in Alzheimer's disease pathogenesis and glycogen synthase kinase-3 inhibitors.
    Avila J, Wandosell F, Hernández F.
    Expert Rev Neurother; 2010 May 03; 10(5):703-10. PubMed ID: 20420491
    [Abstract] [Full Text] [Related]

  • 13. Alpha1-antichymotrypsin, an inflammatory protein overexpressed in Alzheimer's disease brain, induces tau phosphorylation in neurons.
    Padmanabhan J, Levy M, Dickson DW, Potter H.
    Brain; 2006 Nov 03; 129(Pt 11):3020-34. PubMed ID: 16987932
    [Abstract] [Full Text] [Related]

  • 14. Nitric oxide induces tau hyperphosphorylation via glycogen synthase kinase-3beta activation.
    Zhang YJ, Xu YF, Liu YH, Yin J, Wang JZ.
    FEBS Lett; 2005 Nov 07; 579(27):6230-6. PubMed ID: 16253246
    [Abstract] [Full Text] [Related]

  • 15. Chronic lithium treatment decreases mutant tau protein aggregation in a transgenic mouse model.
    Pérez M, Hernández F, Lim F, Díaz-Nido J, Avila J.
    J Alzheimers Dis; 2003 Aug 07; 5(4):301-8. PubMed ID: 14624025
    [Abstract] [Full Text] [Related]

  • 16. Lithium treatment arrests the development of neurofibrillary tangles in mutant tau transgenic mice with advanced neurofibrillary pathology.
    Leroy K, Ando K, Héraud C, Yilmaz Z, Authelet M, Boeynaems JM, Buée L, De Decker R, Brion JP.
    J Alzheimers Dis; 2010 Aug 07; 19(2):705-19. PubMed ID: 20110614
    [Abstract] [Full Text] [Related]

  • 17. Parkinson's disease-associated DJ-1 mutations increase abnormal phosphorylation of tau protein through Akt/GSK-3β pathways.
    Wang Y, Liu W, He X, Zhou F.
    J Mol Neurosci; 2013 Nov 07; 51(3):911-8. PubMed ID: 23979838
    [Abstract] [Full Text] [Related]

  • 18. Hyperphosphorylated Tau in an α-synuclein-overexpressing transgenic model of Parkinson's disease.
    Haggerty T, Credle J, Rodriguez O, Wills J, Oaks AW, Masliah E, Sidhu A.
    Eur J Neurosci; 2011 May 07; 33(9):1598-610. PubMed ID: 21453448
    [Abstract] [Full Text] [Related]

  • 19. GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila.
    Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, Squire A, Mears A, Drummond JA, Berg S, MacKay D, Asuni AA, Bhat R, Lovestone S.
    Mol Psychiatry; 2004 May 07; 9(5):522-30. PubMed ID: 14993907
    [Abstract] [Full Text] [Related]

  • 20. Cdk5 is a key factor in tau aggregation and tangle formation in vivo.
    Noble W, Olm V, Takata K, Casey E, Mary O, Meyerson J, Gaynor K, LaFrancois J, Wang L, Kondo T, Davies P, Burns M, Veeranna, Nixon R, Dickson D, Matsuoka Y, Ahlijanian M, Lau LF, Duff K.
    Neuron; 2003 May 22; 38(4):555-65. PubMed ID: 12765608
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 23.