These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


144 related items for PubMed ID: 15870

  • 1. Proton gradients as possible intermediary energy transducers during ATP-driven reverse electron flow in chloroplasts.
    Avron M, Schreiber U.
    FEBS Lett; 1977 May 01; 77(1):1-6. PubMed ID: 15870
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. On the functional proton current pathway of electron transport phosphorylation. An electrodic view.
    Kell DB.
    Biochim Biophys Acta; 1979 Jul 03; 549(1):55-99. PubMed ID: 38839
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Estimation of the activation energy for millisecond delayed fluorescence from uncoupled chloroplasts.
    Hipkins MF, Barber J.
    FEBS Lett; 1974 Jun 15; 42(3):289-92. PubMed ID: 4136724
    [No Abstract] [Full Text] [Related]

  • 7. Uncoupling of photophosphorylation in spinach chloroplasts by the ionophorous antibiotic A23187.
    Andreo CS, Vallejos RH.
    FEBS Lett; 1974 Sep 15; 46(1):343-6. PubMed ID: 4214490
    [No Abstract] [Full Text] [Related]

  • 8. Energy-dependent reverse electron flow in chloroplasts.
    Rienits KG, Hardt H, Avron M.
    Eur J Biochem; 1974 Apr 01; 43(2):291-8. PubMed ID: 4838984
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Control of proton translocation induced by ATPase activity in chloroplasts.
    Carmeli C, Lifshitz Y, Gepshtein A.
    Biochim Biophys Acta; 1975 Feb 17; 376(2):249-58. PubMed ID: 234748
    [Abstract] [Full Text] [Related]

  • 11. Evidence for chemiosmotic coupling of electron transport to ATP synthesis in spinach chloroplasts.
    Telfer A, Evans MC.
    Biochim Biophys Acta; 1972 Mar 16; 256(3):625-37. PubMed ID: 5020234
    [No Abstract] [Full Text] [Related]

  • 12. Membrane-bound ATP synthesis generated by an external electrical field.
    Witt HT, Schlodder E, Gräber P.
    FEBS Lett; 1976 Oct 15; 69(1):272-6. PubMed ID: 992038
    [No Abstract] [Full Text] [Related]

  • 13. Evaluation of electron transport as the basis of adenosine triphosphate synthesis after acid-base transition by spinach chloroplasts.
    Miles CD, Jagendorf AT.
    Biochemistry; 1970 Jan 20; 9(2):429-34. PubMed ID: 5412667
    [No Abstract] [Full Text] [Related]

  • 14. Different sensitivities of chloroplasts to uncouplers when ATP formation is induced by continuous illumination, by brief illumination, by pre-illumination, or by acid-base transitions.
    Ort DR.
    Eur J Biochem; 1978 Apr 17; 85(2):479-85. PubMed ID: 25774
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. II. Effect of ionophorous antibiotics in chlorplasts.
    Shavit N, Degani H, San Pietro A.
    Biochim Biophys Acta; 1970 Aug 04; 216(1):208-19. PubMed ID: 5497185
    [No Abstract] [Full Text] [Related]

  • 19. Inorganic sulfate and selenate as energy transfer inhibitors of photophosphorylation.
    Pick U, Avron M.
    Biochim Biophys Acta; 1973 Nov 22; 325(2):297-303. PubMed ID: 4271564
    [No Abstract] [Full Text] [Related]

  • 20. The interaction of N,N'-dicyclohexylcarbodiimide with the energy conservation systems of the spinach chloroplast.
    Uribe EG.
    Biochemistry; 1972 Nov 07; 11(23):4228-35. PubMed ID: 4628027
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.