These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
140 related items for PubMed ID: 15878
1. Light-activated amino acid transport in Halobacterium halobium envelope vesicles. MacDonald RE, Lanyi JK. Fed Proc; 1977 May; 36(6):1828-32. PubMed ID: 15878 [Abstract] [Full Text] [Related]
2. Light-activated amino acid transport systems in Halobacterium halobium envelope vesicles: role of chemical and electrical gradients. MacDonald RE, Greene RV, Lanyi JK. Biochemistry; 1977 Jul 12; 16(14):3227-35. PubMed ID: 889797 [Abstract] [Full Text] [Related]
3. Light-dependent cation gradients and electrical potential in Halobacterium halobium cell envelope vesicles. Lanyi JK, MacDonald RE. Fed Proc; 1977 May 12; 36(6):1824-7. PubMed ID: 15877 [Abstract] [Full Text] [Related]
4. Transport in halobacterium halobium: light-induced cation-gradients, amino acid transport kinetics, and properties of transport carriers. Lanyi JK. J Supramol Struct; 1977 May 12; 6(2):169-77. PubMed ID: 20536 [No Abstract] [Full Text] [Related]
5. Existence of electrogenic hydrogen ion/sodium ion antiport in Halobacterium halobium cell envelope vesicles. Lanyi JK, MacDonald RE. Biochemistry; 1976 Oct 19; 15(21):4608-14. PubMed ID: 9978 [Abstract] [Full Text] [Related]
6. Light-driven primary sodium ion transport in Halobacterium halobium membranes. Lanyi JK. J Supramol Struct; 1980 Oct 19; 13(1):83-92. PubMed ID: 7442256 [Abstract] [Full Text] [Related]
7. Light-induced glutamate transport in Halobacterium halobium envelope vesicles. II. Evidence that the driving force is a light-dependent sodium gradient. Lanyi JK, Renthal R, MacDonald RE. Biochemistry; 1976 Apr 20; 15(8):1603-10. PubMed ID: 5106 [Abstract] [Full Text] [Related]
12. Light-induced leucine transport in Halobacterium halobium envelope vesicles: a chemiosmotic system. MacDonald RE, Lanyi LK. Biochemistry; 1975 Jul 20; 14(13):2882-9. PubMed ID: 50859 [Abstract] [Full Text] [Related]
13. Postnatal amino acid uptake by the rat small intestine. Changes in membrane transport systems for amino acids associated with maturation of jejunal morphology. Murphy S, Daniels VG. J Dev Physiol; 1979 Apr 20; 1(2):111-26. PubMed ID: 121999 [Abstract] [Full Text] [Related]
14. On the glutamate transport through cell envelope vesicles of Halobacterium halobium. Kamo N, Wakamatsu Y, Kohno K, Kobatake Y. Biochem Biophys Res Commun; 1988 May 16; 152(3):1090-6. PubMed ID: 2897843 [Abstract] [Full Text] [Related]
15. Cl- and membrane potential dependence of amino acid transport across the rat renal brush border membrane. Zelikovic I, Budreau-Patters A. Mol Genet Metab; 1999 Jul 16; 67(3):236-47. PubMed ID: 10381331 [Abstract] [Full Text] [Related]
16. Na+ transport via Na+/H+ antiport in Halobacterium halobium envelope vesicles. Luisi BF, Lanyi JK, Weber HJ. FEBS Lett; 1980 Aug 11; 117(1):354-8. PubMed ID: 6250899 [Abstract] [Full Text] [Related]
17. Cerebral amino acid levels and uptake in rats after portocaval anastomosis: II. Regional studies in vivo. Zanchin G, Rigotti P, Dussini N, Vassanelli P, Battistin L. J Neurosci Res; 1979 Aug 11; 4(4):301-10. PubMed ID: 469965 [Abstract] [Full Text] [Related]
18. Na+-dependent transport of large neutral amino acids occurs at the abluminal membrane of the blood-brain barrier. O'Kane RL, Hawkins RA. Am J Physiol Endocrinol Metab; 2003 Dec 11; 285(6):E1167-73. PubMed ID: 12933350 [Abstract] [Full Text] [Related]
20. The role of the proton electrochemical gradient in the transepithelial absorption of amino acids by human intestinal Caco-2 cell monolayers. Thwaites DT, McEwan GT, Simmons NL. J Membr Biol; 1995 Jun 11; 145(3):245-56. PubMed ID: 7563025 [Abstract] [Full Text] [Related] Page: [Next] [New Search]