These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1058 related items for PubMed ID: 15878310

  • 1. Overexpression of Rad51 inhibits double-strand break-induced homologous recombination but does not affect gene conversion tract lengths.
    Paffett KS, Clikeman JA, Palmer S, Nickoloff JA.
    DNA Repair (Amst); 2005 Jun 08; 4(6):687-98. PubMed ID: 15878310
    [Abstract] [Full Text] [Related]

  • 2. The Saccharomyces cerevisiae PDS1 and RAD9 checkpoint genes control different DNA double-strand break repair pathways.
    DeMase D, Zeng L, Cera C, Fasullo M.
    DNA Repair (Amst); 2005 Jan 02; 4(1):59-69. PubMed ID: 15533838
    [Abstract] [Full Text] [Related]

  • 3. Spontaneous and double-strand break-induced recombination, and gene conversion tract lengths, are differentially affected by overexpression of wild-type or ATPase-defective yeast Rad54.
    Kim PM, Paffett KS, Solinger JA, Heyer WD, Nickoloff JA.
    Nucleic Acids Res; 2002 Jul 01; 30(13):2727-35. PubMed ID: 12087154
    [Abstract] [Full Text] [Related]

  • 4. Relative contribution of homologous recombination and non-homologous end-joining to DNA double-strand break repair after oxidative stress in Saccharomyces cerevisiae.
    Letavayová L, Marková E, Hermanská K, Vlcková V, Vlasáková D, Chovanec M, Brozmanová J.
    DNA Repair (Amst); 2006 May 10; 5(5):602-10. PubMed ID: 16515894
    [Abstract] [Full Text] [Related]

  • 5. Overexpression of human RAD51 and RAD52 reduces double-strand break-induced homologous recombination in mammalian cells.
    Kim PM, Allen C, Wagener BM, Shen Z, Nickoloff JA.
    Nucleic Acids Res; 2001 Nov 01; 29(21):4352-60. PubMed ID: 11691922
    [Abstract] [Full Text] [Related]

  • 6. BRCA1 regulates RAD51 function in response to DNA damage and suppresses spontaneous sister chromatid replication slippage: implications for sister chromatid cohesion, genome stability, and carcinogenesis.
    Cousineau I, Abaji C, Belmaaza A.
    Cancer Res; 2005 Dec 15; 65(24):11384-91. PubMed ID: 16357146
    [Abstract] [Full Text] [Related]

  • 7. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair.
    Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S.
    DNA Repair (Amst); 2006 Sep 08; 5(9-10):1021-9. PubMed ID: 16807135
    [Abstract] [Full Text] [Related]

  • 8. Homologous recombination protects mammalian cells from replication-associated DNA double-strand breaks arising in response to methyl methanesulfonate.
    Nikolova T, Ensminger M, Löbrich M, Kaina B.
    DNA Repair (Amst); 2010 Oct 05; 9(10):1050-63. PubMed ID: 20708982
    [Abstract] [Full Text] [Related]

  • 9. Mre11 and Ku regulation of double-strand break repair by gene conversion and break-induced replication.
    Krishna S, Wagener BM, Liu HP, Lo YC, Sterk R, Petrini JH, Nickoloff JA.
    DNA Repair (Amst); 2007 Jun 01; 6(6):797-808. PubMed ID: 17321803
    [Abstract] [Full Text] [Related]

  • 10. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments.
    Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F.
    Nature; 2003 May 15; 423(6937):309-12. PubMed ID: 12748645
    [Abstract] [Full Text] [Related]

  • 11. A postincision-deficient TFIIH causes replication fork breakage and uncovers alternative Rad51- or Pol32-mediated restart mechanisms.
    Moriel-Carretero M, Aguilera A.
    Mol Cell; 2010 Mar 12; 37(5):690-701. PubMed ID: 20227372
    [Abstract] [Full Text] [Related]

  • 12. Recombinational repair in yeast: functional interactions between Rad51 and Rad54 proteins.
    Clever B, Interthal H, Schmuckli-Maurer J, King J, Sigrist M, Heyer WD.
    EMBO J; 1997 May 01; 16(9):2535-44. PubMed ID: 9171366
    [Abstract] [Full Text] [Related]

  • 13. Homologous recombination is responsible for cell death in the absence of the Sgs1 and Srs2 helicases.
    Gangloff S, Soustelle C, Fabre F.
    Nat Genet; 2000 Jun 01; 25(2):192-4. PubMed ID: 10835635
    [Abstract] [Full Text] [Related]

  • 14. DNA helicase Srs2 disrupts the Rad51 presynaptic filament.
    Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H, Ellenberger T, Sung P.
    Nature; 2003 May 15; 423(6937):305-9. PubMed ID: 12748644
    [Abstract] [Full Text] [Related]

  • 15. Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1.
    Pohl TJ, Nickoloff JA.
    Mol Cell Biol; 2008 Feb 15; 28(3):897-906. PubMed ID: 18039855
    [Abstract] [Full Text] [Related]

  • 16. DNA photodamage, repair, gene induction and genotoxicity following exposures to 254 nm UV and 8-methoxypsoralen plus UVA in a eukaryotic cell system.
    Averbeck D, Averbeck S.
    Photochem Photobiol; 1998 Sep 15; 68(3):289-95. PubMed ID: 9747584
    [Abstract] [Full Text] [Related]

  • 17. Pathway utilization in response to a site-specific DNA double-strand break in fission yeast.
    Prudden J, Evans JS, Hussey SP, Deans B, O'Neill P, Thacker J, Humphrey T.
    EMBO J; 2003 Mar 17; 22(6):1419-30. PubMed ID: 12628934
    [Abstract] [Full Text] [Related]

  • 18. Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break.
    Signon L, Malkova A, Naylor ML, Klein H, Haber JE.
    Mol Cell Biol; 2001 Mar 17; 21(6):2048-56. PubMed ID: 11238940
    [Abstract] [Full Text] [Related]

  • 19. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells.
    Frankenberg-Schwager M, Becker M, Garg I, Pralle E, Wolf H, Frankenberg D.
    Radiat Res; 2008 Dec 17; 170(6):784-93. PubMed ID: 19138034
    [Abstract] [Full Text] [Related]

  • 20. The Escherichia coli RecA protein complements recombination defective phenotype of the Saccharomyces cerevisiae rad52 mutant cells.
    Dudás A, Marková E, Vlasáková D, Kolman A, Bartosová Z, Brozmanová J, Chovanec M.
    Yeast; 2003 Apr 15; 20(5):389-96. PubMed ID: 12673622
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 53.