These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


194 related items for PubMed ID: 15879350

  • 21. Sequence requirements for terminators and antiterminators in the T box transcription antitermination system: disparity between conservation and functional requirements.
    Grundy FJ, Moir TR, Haldeman MT, Henkin TM.
    Nucleic Acids Res; 2002 Apr 01; 30(7):1646-55. PubMed ID: 11917026
    [Abstract] [Full Text] [Related]

  • 22. tRNA-directed transcription antitermination.
    Henkin TM.
    Mol Microbiol; 1994 Aug 01; 13(3):381-7. PubMed ID: 7527891
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. tRNA as a positive regulator of transcription antitermination in B. subtilis.
    Grundy FJ, Henkin TM.
    Cell; 1993 Aug 13; 74(3):475-82. PubMed ID: 8348614
    [Abstract] [Full Text] [Related]

  • 25. A tertiary structural element in S box leader RNAs is required for S-adenosylmethionine-directed transcription termination.
    McDaniel BA, Grundy FJ, Henkin TM.
    Mol Microbiol; 2005 Aug 13; 57(4):1008-21. PubMed ID: 16091040
    [Abstract] [Full Text] [Related]

  • 26. tRNA regulation of gene expression: interactions of an mRNA 5'-UTR with a regulatory tRNA.
    Nelson AR, Henkin TM, Agris PF.
    RNA; 2006 Jul 13; 12(7):1254-61. PubMed ID: 16741230
    [Abstract] [Full Text] [Related]

  • 27. Capture and Release of tRNA by the T-Loop Receptor in the Function of the T-Box Riboswitch.
    Fang X, Michnicka M, Zhang Y, Wang YX, Nikonowicz EP.
    Biochemistry; 2017 Jul 18; 56(28):3549-3558. PubMed ID: 28621923
    [Abstract] [Full Text] [Related]

  • 28. Identification of Spermidine Binding Site in T-box Riboswitch Antiterminator RNA.
    Liu J, Zeng C, Hogan V, Zhou S, Monwar MM, Hines JV.
    Chem Biol Drug Des; 2016 Feb 18; 87(2):182-9. PubMed ID: 26348362
    [Abstract] [Full Text] [Related]

  • 29. TRAP-5' stem loop interaction increases the efficiency of transcription termination in the Bacillus subtilis trpEDCFBA operon leader region.
    McGraw AP, Bevilacqua PC, Babitzke P.
    RNA; 2007 Nov 18; 13(11):2020-33. PubMed ID: 17881743
    [Abstract] [Full Text] [Related]

  • 30. Analysis of the Bacillus subtilis tyrS gene: conservation of a regulatory sequence in multiple tRNA synthetase genes.
    Henkin TM, Glass BL, Grundy FJ.
    J Bacteriol; 1992 Feb 18; 174(4):1299-306. PubMed ID: 1735721
    [Abstract] [Full Text] [Related]

  • 31. Natural variability in S-adenosylmethionine (SAM)-dependent riboswitches: S-box elements in bacillus subtilis exhibit differential sensitivity to SAM In vivo and in vitro.
    Tomsic J, McDaniel BA, Grundy FJ, Henkin TM.
    J Bacteriol; 2008 Feb 18; 190(3):823-33. PubMed ID: 18039762
    [Abstract] [Full Text] [Related]

  • 32. Aminoacyl-tRNA synthetase genes of Bacillus subtilis: organization and regulation.
    Pelchat M, Lapointe J.
    Biochem Cell Biol; 1999 Feb 18; 77(4):343-7. PubMed ID: 10546897
    [Abstract] [Full Text] [Related]

  • 33. Identity elements in tRNA-mediated transcription antitermination: implication of tRNA D- and T-arms in mRNA recognition.
    van de Guchte M, Ehrlich SD, Chopin A.
    Microbiology (Reading); 2001 May 18; 147(Pt 5):1223-1233. PubMed ID: 11320125
    [Abstract] [Full Text] [Related]

  • 34. Fluorescence resonance energy transfer studies of aminoglycoside binding to a T box antiterminator RNA.
    Means JA, Hines JV.
    Bioorg Med Chem Lett; 2005 Apr 15; 15(8):2169-72. PubMed ID: 15808490
    [Abstract] [Full Text] [Related]

  • 35. The Bacillus subtilis tyrZ gene encodes a highly selective tyrosyl-tRNA synthetase and is regulated by a MarR regulator and T box riboswitch.
    Williams-Wagner RN, Grundy FJ, Raina M, Ibba M, Henkin TM.
    J Bacteriol; 2015 May 15; 197(9):1624-31. PubMed ID: 25733610
    [Abstract] [Full Text] [Related]

  • 36. The T box mechanism: tRNA as a regulatory molecule.
    Green NJ, Grundy FJ, Henkin TM.
    FEBS Lett; 2010 Jan 21; 584(2):318-24. PubMed ID: 19932103
    [Abstract] [Full Text] [Related]

  • 37. Three G.C base pairs required for the efficient aminoacylation of tRNATrp by tryptophanyl-tRNA synthetase from Bacillus subtilis.
    Xu F, Jiang G, Li W, He X, Jin Y, Wang D.
    Biochemistry; 2002 Jun 25; 41(25):8087-92. PubMed ID: 12069601
    [Abstract] [Full Text] [Related]

  • 38. In vivo and in vitro processing of the Bacillus subtilis transcript coding for glutamyl-tRNA synthetase, serine acetyltransferase, and cysteinyl-tRNA synthetase.
    Pelchat M, Lapointe J.
    RNA; 1999 Feb 25; 5(2):281-9. PubMed ID: 10024179
    [Abstract] [Full Text] [Related]

  • 39. A glycine-dependent riboswitch that uses cooperative binding to control gene expression.
    Mandal M, Lee M, Barrick JE, Weinberg Z, Emilsson GM, Ruzzo WL, Breaker RR.
    Science; 2004 Oct 08; 306(5694):275-9. PubMed ID: 15472076
    [Abstract] [Full Text] [Related]

  • 40. The T-Box Riboswitch: tRNA as an Effector to Modulate Gene Regulation.
    Kreuzer KD, Henkin TM.
    Microbiol Spectr; 2018 Jul 08; 6(4):. PubMed ID: 30051797
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.