These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Comparison of alternative analytical techniques for the characterisation of the human serum proteome in HUPO Plasma Proteome Project. Li X, Gong Y, Wang Y, Wu S, Cai Y, He P, Lu Z, Ying W, Zhang Y, Jiao L, He H, Zhang Z, He F, Zhao X, Qian X. Proteomics; 2005 Aug; 5(13):3423-41. PubMed ID: 16052619 [Abstract] [Full Text] [Related]
3. Off-line two-dimensional liquid chromatography with maximized sample loading to reversed-phase liquid chromatography-electrospray ionization tandem mass spectrometry for shotgun proteome analysis. Wang N, Xie C, Young JB, Li L. Anal Chem; 2009 Feb 01; 81(3):1049-60. PubMed ID: 19178338 [Abstract] [Full Text] [Related]
4. Protein- versus peptide fractionation in the first dimension of two-dimensional high-performance liquid chromatography-matrix-assisted laser desorption/ionization tandem mass spectrometry for qualitative proteome analysis of tissue samples. Melchior K, Tholey A, Heisel S, Keller A, Lenhof HP, Meese E, Huber CG. J Chromatogr A; 2010 Oct 01; 1217(40):6159-68. PubMed ID: 20810122 [Abstract] [Full Text] [Related]
5. High speed two-dimensional protein separation without gel by isoelectric focusing-asymmetrical flow field flow fractionation: application to urinary proteome. Kim KH, Moon MH. J Proteome Res; 2009 Sep 01; 8(9):4272-8. PubMed ID: 19653698 [Abstract] [Full Text] [Related]
6. 2-DE proteomic analysis of the model cyanobacterium Anabaena variabilis. Barrios-Llerena ME, Reardon KF, Wright PC. Electrophoresis; 2007 May 01; 28(10):1624-32. PubMed ID: 17447238 [Abstract] [Full Text] [Related]
7. Reversed-phase high-performance liquid chromatographic prefractionation of immunodepleted human serum proteins to enhance mass spectrometry identification of lower-abundant proteins. Martosella J, Zolotarjova N, Liu H, Nicol G, Boyes BE. J Proteome Res; 2005 May 01; 4(5):1522-37. PubMed ID: 16212403 [Abstract] [Full Text] [Related]
9. Two-dimensional reversed-phase x ion-pair reversed-phase HPLC: an alternative approach to high-resolution peptide separation for shotgun proteome analysis. Delmotte N, Lasaosa M, Tholey A, Heinzle E, Huber CG. J Proteome Res; 2007 Nov 01; 6(11):4363-73. PubMed ID: 17924683 [Abstract] [Full Text] [Related]
10. Cloud-point extraction and delipidation of porcine brain proteins in combination with bottom-up mass spectrometry approaches for proteome analysis. Shevchenko G, Sjödin MO, Malmström D, Wetterhall M, Bergquist J. J Proteome Res; 2010 Aug 06; 9(8):3903-11. PubMed ID: 20586484 [Abstract] [Full Text] [Related]
11. Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: application to proteins isolated by gel electrophoresis. Sachon E, Mohammed S, Bache N, Jensen ON. Rapid Commun Mass Spectrom; 2006 Aug 06; 20(7):1127-34. PubMed ID: 16521170 [Abstract] [Full Text] [Related]
12. In-depth proteomic profiling of the normal human kidney glomerulus using two-dimensional protein prefractionation in combination with liquid chromatography-tandem mass spectrometry. Miyamoto M, Yoshida Y, Taguchi I, Nagasaka Y, Tasaki M, Zhang Y, Xu B, Nameta M, Sezaki H, Cuellar LM, Osawa T, Morishita H, Sekiyama S, Yaoita E, Kimura K, Yamamoto T. J Proteome Res; 2007 Sep 06; 6(9):3680-90. PubMed ID: 17711322 [Abstract] [Full Text] [Related]
13. Identification and characterization of the Sulfolobus solfataricus P2 proteome. Chong PK, Wright PC. J Proteome Res; 2005 Sep 06; 4(5):1789-98. PubMed ID: 16212434 [Abstract] [Full Text] [Related]
14. Utility of mass spectrometry for proteome analysis: part I. Conceptual and experimental approaches. Ahmed FE. Expert Rev Proteomics; 2008 Dec 06; 5(6):841-64. PubMed ID: 19086863 [Abstract] [Full Text] [Related]
15. Proteomic characterization of acid stress response in Synechocystis sp. PCC 6803. Kurian D, Phadwal K, Mäenpää P. Proteomics; 2006 Jun 06; 6(12):3614-24. PubMed ID: 16691555 [Abstract] [Full Text] [Related]
16. In-gel isoelectric focusing of peptides as a tool for improved protein identification. Krijgsveld J, Gauci S, Dormeyer W, Heck AJ. J Proteome Res; 2006 Jul 06; 5(7):1721-30. PubMed ID: 16823980 [Abstract] [Full Text] [Related]
17. Proteome analysis of microdissected tumor tissue using a capillary isoelectric focusing-based multidimensional separation platform coupled with ESI-tandem MS. Wang Y, Rudnick PA, Evans EL, Li J, Zhuang Z, Devoe DL, Lee CS, Balgley BM. Anal Chem; 2005 Oct 15; 77(20):6549-56. PubMed ID: 16223239 [Abstract] [Full Text] [Related]
18. Imaging mass spectrometry using peptide isoelectric focusing. Vaezzadeh AR, Simicevic J, Chauvet A, François P, Zimmermann-Ivol CG, Lescuyer P, Deshusses JP, Hochstrasser DF. Rapid Commun Mass Spectrom; 2008 Sep 15; 22(17):2667-76. PubMed ID: 18677718 [Abstract] [Full Text] [Related]
19. Chromatographic separations as a prelude to two-dimensional electrophoresis in proteomics analysis. Butt A, Davison MD, Smith GJ, Young JA, Gaskell SJ, Oliver SG, Beynon RJ. Proteomics; 2001 Jan 15; 1(1):42-53. PubMed ID: 11680897 [Abstract] [Full Text] [Related]
20. Narrow-band fractionation of proteins from whole cell lysates using isoelectric membrane focusing and nonporous reversed-phase separations. Zhu Y, Lubman DM. Electrophoresis; 2004 Apr 15; 25(7-8):949-58. PubMed ID: 15095432 [Abstract] [Full Text] [Related] Page: [Next] [New Search]