These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


774 related items for PubMed ID: 15890068

  • 1. CAGER: classification analysis of gene expression regulation using multiple information sources.
    Ruan J, Zhang W.
    BMC Bioinformatics; 2005 May 12; 6():114. PubMed ID: 15890068
    [Abstract] [Full Text] [Related]

  • 2. Defining transcriptional networks through integrative modeling of mRNA expression and transcription factor binding data.
    Gao F, Foat BC, Bussemaker HJ.
    BMC Bioinformatics; 2004 Mar 18; 5():31. PubMed ID: 15113405
    [Abstract] [Full Text] [Related]

  • 3. A classification-based framework for predicting and analyzing gene regulatory response.
    Kundaje A, Middendorf M, Shah M, Wiggins CH, Freund Y, Leslie C.
    BMC Bioinformatics; 2006 Mar 20; 7 Suppl 1(Suppl 1):S5. PubMed ID: 16723008
    [Abstract] [Full Text] [Related]

  • 4. Predicting genetic regulatory response using classification.
    Middendorf M, Kundaje A, Wiggins C, Freund Y, Leslie C.
    Bioinformatics; 2004 Aug 04; 20 Suppl 1():i232-40. PubMed ID: 15262804
    [Abstract] [Full Text] [Related]

  • 5. CARRIE web service: automated transcriptional regulatory network inference and interactive analysis.
    Haverty PM, Frith MC, Weng Z.
    Nucleic Acids Res; 2004 Jul 01; 32(Web Server issue):W213-6. PubMed ID: 15215383
    [Abstract] [Full Text] [Related]

  • 6. An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments.
    Liu XS, Brutlag DL, Liu JS.
    Nat Biotechnol; 2002 Aug 01; 20(8):835-9. PubMed ID: 12101404
    [Abstract] [Full Text] [Related]

  • 7. MAPPER: a search engine for the computational identification of putative transcription factor binding sites in multiple genomes.
    Marinescu VD, Kohane IS, Riva A.
    BMC Bioinformatics; 2005 Mar 30; 6():79. PubMed ID: 15799782
    [Abstract] [Full Text] [Related]

  • 8. A suite of web-based programs to search for transcriptional regulatory motifs.
    Liu Y, Wei L, Batzoglou S, Brutlag DL, Liu JS, Liu XS.
    Nucleic Acids Res; 2004 Jul 01; 32(Web Server issue):W204-7. PubMed ID: 15215381
    [Abstract] [Full Text] [Related]

  • 9. Towards precise classification of cancers based on robust gene functional expression profiles.
    Guo Z, Zhang T, Li X, Wang Q, Xu J, Yu H, Zhu J, Wang H, Wang C, Topol EJ, Wang Q, Rao S.
    BMC Bioinformatics; 2005 Mar 17; 6():58. PubMed ID: 15774002
    [Abstract] [Full Text] [Related]

  • 10. iTAR: a web server for identifying target genes of transcription factors using ChIP-seq or ChIP-chip data.
    Yang CC, Andrews EH, Chen MH, Wang WY, Chen JJ, Gerstein M, Liu CC, Cheng C.
    BMC Genomics; 2016 Aug 12; 17(1):632. PubMed ID: 27519564
    [Abstract] [Full Text] [Related]

  • 11. CompMoby: comparative MobyDick for detection of cis-regulatory motifs.
    Chaivorapol C, Melton C, Wei G, Yeh RF, Ramalho-Santos M, Blelloch R, Li H.
    BMC Bioinformatics; 2008 Oct 27; 9():455. PubMed ID: 18950538
    [Abstract] [Full Text] [Related]

  • 12. PathMAPA: a tool for displaying gene expression and performing statistical tests on metabolic pathways at multiple levels for Arabidopsis.
    Pan D, Sun N, Cheung KH, Guan Z, Ma L, Holford M, Deng X, Zhao H.
    BMC Bioinformatics; 2003 Nov 07; 4():56. PubMed ID: 14604444
    [Abstract] [Full Text] [Related]

  • 13. CoCo: a web application to display, store and curate ChIP-on-chip data integrated with diverse types of gene expression data.
    Girardot C, Sklyar O, Grosz S, Huber W, Furlong EE.
    Bioinformatics; 2007 Mar 15; 23(6):771-3. PubMed ID: 17234641
    [Abstract] [Full Text] [Related]

  • 14. YGA: identifying distinct biological features between yeast gene sets.
    Chang DT, Li WS, Bai YH, Wu WS.
    Gene; 2013 Apr 10; 518(1):26-34. PubMed ID: 23266802
    [Abstract] [Full Text] [Related]

  • 15. Using Weeder, Pscan, and PscanChIP for the Discovery of Enriched Transcription Factor Binding Site Motifs in Nucleotide Sequences.
    Zambelli F, Pesole G, Pavesi G.
    Curr Protoc Bioinformatics; 2014 Sep 08; 47():2.11.1-31. PubMed ID: 25199791
    [Abstract] [Full Text] [Related]

  • 16. Combining sequence and time series expression data to learn transcriptional modules.
    Kundaje A, Middendorf M, Gao F, Wiggins C, Leslie C.
    IEEE/ACM Trans Comput Biol Bioinform; 2005 Sep 08; 2(3):194-202. PubMed ID: 17044183
    [Abstract] [Full Text] [Related]

  • 17. Regulatory motif finding by logic regression.
    Keles S, van der Laan MJ, Vulpe C.
    Bioinformatics; 2004 Nov 01; 20(16):2799-811. PubMed ID: 15166027
    [Abstract] [Full Text] [Related]

  • 18. Genome-wide prediction of transcriptional regulatory elements of human promoters using gene expression and promoter analysis data.
    Kim SY, Kim Y.
    BMC Bioinformatics; 2006 Jul 04; 7():330. PubMed ID: 16817975
    [Abstract] [Full Text] [Related]

  • 19. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M, Tabari ES, Su Z.
    BMC Genomics; 2014 Dec 02; 15():1047. PubMed ID: 25442502
    [Abstract] [Full Text] [Related]

  • 20. Quantitative inference of dynamic regulatory pathways via microarray data.
    Chang WC, Li CW, Chen BS.
    BMC Bioinformatics; 2005 Mar 07; 6():44. PubMed ID: 15748298
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 39.