These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


143 related items for PubMed ID: 15897226

  • 61.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 62.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 63. Comparing Nadir and Oblique Thermal Imagery in UAV-Based 3D Crop Water Stress Index Applications for Precision Viticulture with LiDAR Validation.
    Buunk T, Vélez S, Ariza-Sentís M, Valente J.
    Sensors (Basel); 2023 Oct 21; 23(20):. PubMed ID: 37896718
    [Abstract] [Full Text] [Related]

  • 64. Assessing the Crop-Water Status in Almond (Prunus dulcis Mill.) Trees via Thermal Imaging Camera Connected to Smartphone.
    García-Tejero IF, Ortega-Arévalo CJ, Iglesias-Contreras M, Moreno JM, Souza L, Tavira SC, Durán-Zuazo VH.
    Sensors (Basel); 2018 Mar 31; 18(4):. PubMed ID: 29614740
    [Abstract] [Full Text] [Related]

  • 65. Directional effects on scene complexity in oblique thermal imagery and photographs of a deciduous forest.
    Balick LK, Doak EL.
    Appl Opt; 1988 Oct 01; 27(19):3978-87. PubMed ID: 20539504
    [Abstract] [Full Text] [Related]

  • 66. Maize Canopy Temperature Extracted From UAV Thermal and RGB Imagery and Its Application in Water Stress Monitoring.
    Zhang L, Niu Y, Zhang H, Han W, Li G, Tang J, Peng X.
    Front Plant Sci; 2019 Oct 01; 10():1270. PubMed ID: 31649715
    [Abstract] [Full Text] [Related]

  • 67. Electronic leaf wetness duration sensor: why it should be painted.
    Sentelhas PC, Monteiro JE, Gillespie TJ.
    Int J Biometeorol; 2004 May 01; 48(4):202-5. PubMed ID: 14750003
    [Abstract] [Full Text] [Related]

  • 68. Water Stress Index Detection Using a Low-Cost Infrared Sensor and Excess Green Image Processing.
    Paulo RL, Garcia AP, Umezu CK, Camargo AP, Soares FT, Albiero D.
    Sensors (Basel); 2023 Jan 24; 23(3):. PubMed ID: 36772359
    [Abstract] [Full Text] [Related]

  • 69. Automatic detection of regions in spinach canopies responding to soil moisture deficit using combined visible and thermal imagery.
    Raza SE, Smith HK, Clarkson GJ, Taylor G, Thompson AJ, Clarkson J, Rajpoot NM.
    PLoS One; 2014 Jan 24; 9(6):e97612. PubMed ID: 24892284
    [Abstract] [Full Text] [Related]

  • 70. Influence of Time-Lag Effects between Winter-Wheat Canopy Temperature and Atmospheric Temperature on the Accuracy of CWSI Inversion of Photosynthetic Parameters.
    Wang Y, Lu Y, Yang N, Wang J, Huang Z, Chen J, Zhang Z.
    Plants (Basel); 2024 Jun 19; 13(12):. PubMed ID: 38931132
    [Abstract] [Full Text] [Related]

  • 71. Automatic Crop Canopy Temperature Measurement Using a Low-Cost Image-Based Thermal Sensor: Application in a Pomegranate Orchard under a Permanent Shade Net House.
    Giménez-Gallego J, González-Teruel JD, Blaya-Ros PJ, Toledo-Moreo AB, Domingo-Miguel R, Torres-Sánchez R.
    Sensors (Basel); 2023 Mar 08; 23(6):. PubMed ID: 36991626
    [Abstract] [Full Text] [Related]

  • 72. Parametrization of lower limit temperature in crop water stress index model: A case study of Quercus variabilis plantation.
    Ba YJ, Liu LQ, Peng Q, Zhang G, Lu S, Luo KS, Zhang JS.
    Ying Yong Sheng Tai Xue Bao; 2024 Jul 18; 35(7):1866-1876. PubMed ID: 39233416
    [Abstract] [Full Text] [Related]

  • 73. Strategies for improving water use efficiency of livestock production in rain-fed systems.
    Kebebe EG, Oosting SJ, Haileslassie A, Duncan AJ, de Boer IJ.
    Animal; 2015 May 18; 9(5):908-16. PubMed ID: 25496957
    [Abstract] [Full Text] [Related]

  • 74. Performance Assessment of Thermal Infrared Cameras of Different Resolutions to Estimate Tree Water Status from Two Cherry Cultivars: An Alternative to Midday Stem Water Potential and Stomatal Conductance.
    Carrasco-Benavides M, Antunez-Quilobrán J, Baffico-Hernández A, Ávila-Sánchez C, Ortega-Farías S, Espinoza S, Gajardo J, Mora M, Fuentes S.
    Sensors (Basel); 2020 Jun 25; 20(12):. PubMed ID: 32630534
    [Abstract] [Full Text] [Related]

  • 75. Vineyard water status assessment using on-the-go thermal imaging and machine learning.
    Gutiérrez S, Diago MP, Fernández-Novales J, Tardaguila J.
    PLoS One; 2018 Jun 25; 13(2):e0192037. PubMed ID: 29389982
    [Abstract] [Full Text] [Related]

  • 76. Water Stress Identification of Winter Wheat Crop with State-of-the-Art AI Techniques and High-Resolution Thermal-RGB Imagery.
    Chandel NS, Rajwade YA, Dubey K, Chandel AK, Subeesh A, Tiwari MK.
    Plants (Basel); 2022 Dec 02; 11(23):. PubMed ID: 36501383
    [Abstract] [Full Text] [Related]

  • 77. Mapping Vineyard Leaf Area Using Mobile Terrestrial Laser Scanners: Should Rows be Scanned On-the-Go or Discontinuously Sampled?
    del-Moral-Martínez I, Rosell-Polo JR, Company J, Sanz R, Escolà A, Masip J, Martínez-Casasnovas JA, Arnó J.
    Sensors (Basel); 2016 Jan 19; 16(1):. PubMed ID: 26797618
    [Abstract] [Full Text] [Related]

  • 78. A novel technique to monitor thermal discharges using thermal infrared imaging.
    Muthulakshmi AL, Natesan U, Ferrer VA, Deepthi K, Venugopalan VP, Narasimhan SV.
    Environ Sci Process Impacts; 2013 Sep 19; 15(9):1729-34. PubMed ID: 23839171
    [Abstract] [Full Text] [Related]

  • 79. Can changes in leaf water potential be assessed spectrally?
    Elsayed S, Mistele B, Schmidhalter U.
    Funct Plant Biol; 2011 Jun 19; 38(6):523-533. PubMed ID: 32480906
    [Abstract] [Full Text] [Related]

  • 80. Decision Support System for Variable Rate Irrigation Based on UAV Multispectral Remote Sensing.
    Shi X, Han W, Zhao T, Tang J.
    Sensors (Basel); 2019 Jun 28; 19(13):. PubMed ID: 31261734
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.