These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
102 related items for PubMed ID: 15901954
1. Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy. Svensson T, Swartling J, Taroni P, Torricelli A, Lindblom P, Ingvar C, Andersson-Engels S. Phys Med Biol; 2005 Jun 07; 50(11):2559-71. PubMed ID: 15901954 [Abstract] [Full Text] [Related]
2. Identification and quantification of intrinsic optical contrast for near-infrared mammography. Quaresima V, Matcher SJ, Ferrari M. Photochem Photobiol; 1998 Jan 07; 67(1):4-14. PubMed ID: 9477760 [Abstract] [Full Text] [Related]
3. Sources of absorption and scattering contrast for near-infrared optical mammography. Cerussi AE, Berger AJ, Bevilacqua F, Shah N, Jakubowski D, Butler J, Holcombe RF, Tromberg BJ. Acad Radiol; 2001 Mar 07; 8(3):211-8. PubMed ID: 11249084 [Abstract] [Full Text] [Related]
4. Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast. Cubeddu R, D'Andrea C, Pifferi A, Taroni P, Torricelli A, Valentini G. Photochem Photobiol; 2000 Sep 07; 72(3):383-91. PubMed ID: 10989610 [Abstract] [Full Text] [Related]
5. Developmental changes of optical properties in neonates determined by near-infrared time-resolved spectroscopy. Ijichi S, Kusaka T, Isobe K, Okubo K, Kawada K, Namba M, Okada H, Nishida T, Imai T, Itoh S. Pediatr Res; 2005 Sep 07; 58(3):568-73. PubMed ID: 16148075 [Abstract] [Full Text] [Related]
6. Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas. Grosenick D, Wabnitz H, Moesta KT, Mucke J, Schlag PM, Rinneberg H. Phys Med Biol; 2005 Jun 07; 50(11):2451-68. PubMed ID: 15901948 [Abstract] [Full Text] [Related]
7. Effect of the chest wall on the measurement of hemoglobin concentrations by near-infrared time-resolved spectroscopy in normal breast and cancer. Yoshizawa N, Ueda Y, Nasu H, Ogura H, Ohmae E, Yoshimoto K, Takehara Y, Yamashita Y, Sakahara H. Breast Cancer; 2016 Nov 07; 23(6):844-850. PubMed ID: 26474784 [Abstract] [Full Text] [Related]
8. Spatial variations in optical and physiological properties of healthy breast tissue. Shah N, Cerussi AE, Jakubowski D, Hsiang D, Butler J, Tromberg BJ. J Biomed Opt; 2004 Nov 07; 9(3):534-40. PubMed ID: 15189091 [Abstract] [Full Text] [Related]
9. Determination of optical coefficients and fractal dimensional parameters of cancerous and normal prostate tissues. Pu Y, Wang W, Al-Rubaiee M, Gayen SK, Xu M. Appl Spectrosc; 2012 Jul 07; 66(7):828-34. PubMed ID: 22710079 [Abstract] [Full Text] [Related]
10. Changes of cerebral blood oxygenation and optical pathlength during activation and deactivation in the prefrontal cortex measured by time-resolved near infrared spectroscopy. Sakatani K, Yamashita D, Yamanaka T, Oda M, Yamashita Y, Hoshino T, Fujiwara N, Murata Y, Katayama Y. Life Sci; 2006 May 01; 78(23):2734-41. PubMed ID: 16360709 [Abstract] [Full Text] [Related]
11. Quantitative characterization of optical and physiological parameters in normal breasts using time-resolved spectroscopy: in vivo results of 19 Singapore women. Mo W, Chan TS, Chen L, Chen N. J Biomed Opt; 2009 May 01; 14(6):064004. PubMed ID: 20059242 [Abstract] [Full Text] [Related]
12. Optical analysis of the cirrhotic liver by near-infrared time-resolved spectroscopy. Kitai T, Nishio T, Miwa M, Yamaoka Y. Surg Today; 2004 May 01; 34(5):424-8. PubMed ID: 15108081 [Abstract] [Full Text] [Related]
13. Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin concentration. Laufer J, Delpy D, Elwell C, Beard P. Phys Med Biol; 2007 Jan 07; 52(1):141-68. PubMed ID: 17183133 [Abstract] [Full Text] [Related]
14. Multifrequency frequency-domain spectrometer for tissue analysis. Spichtig S, Hornung R, Brown DW, Haensse D, Wolf M. Rev Sci Instrum; 2009 Feb 07; 80(2):024301. PubMed ID: 19256664 [Abstract] [Full Text] [Related]
15. Time-resolved optical mammography between 637 and 985 nm: clinical study on the detection and identification of breast lesions. Taroni P, Torricelli A, Spinelli L, Pifferi A, Arpaia F, Danesini G, Cubeddu R. Phys Med Biol; 2005 Jun 07; 50(11):2469-88. PubMed ID: 15901949 [Abstract] [Full Text] [Related]
16. Monitoring of cerebral oxygenation with near infrared spectroscopy and tissue oxygen partial pressure during cardiopulmonary resuscitation in pigs. Bein B, Cavus E, Stadlbauer KH, Tonner PH, Steinfath M, Scholz J, Dörges V. Eur J Anaesthesiol; 2006 Jun 07; 23(6):501-9. PubMed ID: 16507191 [Abstract] [Full Text] [Related]
17. [Non-invasive determination of the optical properties of neonatal brain]. Zhao J, Ding HS, Hou XL, Zhou CL. Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Nov 07; 25(11):1768-71. PubMed ID: 16499039 [Abstract] [Full Text] [Related]
18. Spectroscopy enhances the information content of optical mammography. Cerussi AE, Jakubowski D, Shah N, Bevilacqua F, Lanning R, Berger AJ, Hsiang D, Butler J, Holcombe RF, Tromberg BJ. J Biomed Opt; 2002 Jan 07; 7(1):60-71. PubMed ID: 11818013 [Abstract] [Full Text] [Related]
19. Optical characterization of thin female breast biopsies based on the reduced scattering coefficient. Garofalakis A, Zacharakis G, Filippidis G, Sanidas E, Tsiftsis DD, Stathopoulos E, Kafousi M, Ripoll J, Papazoglou TG. Phys Med Biol; 2005 Jun 07; 50(11):2583-96. PubMed ID: 15901956 [Abstract] [Full Text] [Related]
20. Seven-wavelength time-resolved optical mammography extending beyond 1000 nm for breast collagen quantification. Taroni P, Pifferi A, Salvagnini E, Spinelli L, Torricelli A, Cubeddu R. Opt Express; 2009 Aug 31; 17(18):15932-46. PubMed ID: 19724592 [Abstract] [Full Text] [Related] Page: [Next] [New Search]