These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


313 related items for PubMed ID: 15907469

  • 1. ATP hydrolysis-dependent disassembly of the 26S proteasome is part of the catalytic cycle.
    Babbitt SE, Kiss A, Deffenbaugh AE, Chang YH, Bailly E, Erdjument-Bromage H, Tempst P, Buranda T, Sklar LA, Baumler J, Gogol E, Skowyra D.
    Cell; 2005 May 20; 121(4):553-565. PubMed ID: 15907469
    [Abstract] [Full Text] [Related]

  • 2. Specific lid-base contacts in the 26s proteasome control the conformational switching required for substrate degradation.
    Greene ER, Goodall EA, de la Peña AH, Matyskiela ME, Lander GC, Martin A.
    Elife; 2019 Nov 28; 8():. PubMed ID: 31778111
    [Abstract] [Full Text] [Related]

  • 3. ATP binding and ATP hydrolysis play distinct roles in the function of 26S proteasome.
    Liu CW, Li X, Thompson D, Wooding K, Chang TL, Tang Z, Yu H, Thomas PJ, DeMartino GN.
    Mol Cell; 2006 Oct 06; 24(1):39-50. PubMed ID: 17018291
    [Abstract] [Full Text] [Related]

  • 4. ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation.
    Peth A, Uchiki T, Goldberg AL.
    Mol Cell; 2010 Nov 24; 40(4):671-81. PubMed ID: 21095592
    [Abstract] [Full Text] [Related]

  • 5. Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes.
    Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J, Deshaies RJ.
    Mol Biol Cell; 2000 Oct 24; 11(10):3425-39. PubMed ID: 11029046
    [Abstract] [Full Text] [Related]

  • 6. Complete subunit architecture of the proteasome regulatory particle.
    Lander GC, Estrin E, Matyskiela ME, Bashore C, Nogales E, Martin A.
    Nature; 2012 Jan 11; 482(7384):186-91. PubMed ID: 22237024
    [Abstract] [Full Text] [Related]

  • 7. New insight into the role of the Cdc34 ubiquitin-conjugating enzyme in cell cycle regulation via Ace2 and Sic1.
    Cocklin R, Heyen J, Larry T, Tyers M, Goebl M.
    Genetics; 2011 Mar 11; 187(3):701-15. PubMed ID: 21196523
    [Abstract] [Full Text] [Related]

  • 8. Kip1 degradation via the ubiquitin-proteasome pathway.
    Tam SW, Theodoras AM, Pagano M.
    Leukemia; 1997 Apr 11; 11 Suppl 3():363-6. PubMed ID: 9209391
    [Abstract] [Full Text] [Related]

  • 9. Rpn13p and Rpn14p are involved in the recognition of ubiquitinated Gcn4p by the 26S proteasome.
    Seong KM, Baek JH, Yu MH, Kim J.
    FEBS Lett; 2007 May 29; 581(13):2567-73. PubMed ID: 17499717
    [Abstract] [Full Text] [Related]

  • 10. Demonstration that a human 26S proteolytic complex consists of a proteasome and multiple associated protein components and hydrolyzes ATP and ubiquitin-ligated proteins by closely linked mechanisms.
    Kanayama HO, Tamura T, Ugai S, Kagawa S, Tanahashi N, Yoshimura T, Tanaka K, Ichihara A.
    Eur J Biochem; 1992 Jun 01; 206(2):567-78. PubMed ID: 1317798
    [Abstract] [Full Text] [Related]

  • 11. ¹H, ¹³C and ¹⁵N resonance assignments of the VWA domain of Saccharomyces cerevisiae Rpn10, a regulatory subunit of 26S proteasome.
    Wu Y, Hu Y, Jin C.
    Biomol NMR Assign; 2014 Oct 01; 8(2):391-4. PubMed ID: 24037519
    [Abstract] [Full Text] [Related]

  • 12. In vitro reconstitution of SCF substrate ubiquitination with purified proteins.
    Petroski MD, Deshaies RJ.
    Methods Enzymol; 2005 Oct 01; 398():143-58. PubMed ID: 16275326
    [Abstract] [Full Text] [Related]

  • 13. Lysine 63-linked polyubiquitin chain may serve as a targeting signal for the 26S proteasome.
    Saeki Y, Kudo T, Sone T, Kikuchi Y, Yokosawa H, Toh-e A, Tanaka K.
    EMBO J; 2009 Feb 18; 28(4):359-71. PubMed ID: 19153599
    [Abstract] [Full Text] [Related]

  • 14. Expanded Coverage of the 26S Proteasome Conformational Landscape Reveals Mechanisms of Peptidase Gating.
    Eisele MR, Reed RG, Rudack T, Schweitzer A, Beck F, Nagy I, Pfeifer G, Plitzko JM, Baumeister W, Tomko RJ, Sakata E.
    Cell Rep; 2018 Jul 31; 24(5):1301-1315.e5. PubMed ID: 30067984
    [Abstract] [Full Text] [Related]

  • 15. Structure of the 26S proteasome with ATP-γS bound provides insights into the mechanism of nucleotide-dependent substrate translocation.
    Śledź P, Unverdorben P, Beck F, Pfeifer G, Schweitzer A, Förster F, Baumeister W.
    Proc Natl Acad Sci U S A; 2013 Apr 30; 110(18):7264-9. PubMed ID: 23589842
    [Abstract] [Full Text] [Related]

  • 16. Roles of ubiquitin-mediated proteolysis in cell cycle control.
    Hershko A.
    Curr Opin Cell Biol; 1997 Dec 30; 9(6):788-99. PubMed ID: 9425343
    [Abstract] [Full Text] [Related]

  • 17. Conformational switching of the 26S proteasome enables substrate degradation.
    Matyskiela ME, Lander GC, Martin A.
    Nat Struct Mol Biol; 2013 Jul 30; 20(7):781-8. PubMed ID: 23770819
    [Abstract] [Full Text] [Related]

  • 18. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF-Cdc34.
    Petroski MD, Deshaies RJ.
    Cell; 2005 Dec 16; 123(6):1107-20. PubMed ID: 16360039
    [Abstract] [Full Text] [Related]

  • 19. E3 ubiquitin ligase RNF2 interacts with the S6' proteasomal ATPase subunit and increases the ATP hydrolysis activity of S6'.
    Lee SJ, Choi D, Rhim H, Kang S.
    Biochem J; 2005 Jul 15; 389(Pt 2):457-63. PubMed ID: 15773819
    [Abstract] [Full Text] [Related]

  • 20. Proteasomal ATPase-associated factor 1 negatively regulates proteasome activity by interacting with proteasomal ATPases.
    Park Y, Hwang YP, Lee JS, Seo SH, Yoon SK, Yoon JB.
    Mol Cell Biol; 2005 May 15; 25(9):3842-53. PubMed ID: 15831487
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.