These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
316 related items for PubMed ID: 15908291
1. Up-regulation of site-specific remodeling without accumulation of microcracking and loss of osteocytes. Da Costa Gómez TM, Barrett JG, Sample SJ, Radtke CL, Kalscheur VL, Lu Y, Markel MD, Santschi EM, Scollay MC, Muir P. Bone; 2005 Jul; 37(1):16-24. PubMed ID: 15908291 [Abstract] [Full Text] [Related]
2. Response of the osteocyte syncytium adjacent to and distant from linear microcracks during adaptation to cyclic fatigue loading. Colopy SA, Benz-Dean J, Barrett JG, Sample SJ, Lu Y, Danova NA, Kalscheur VL, Vanderby R, Markel MD, Muir P. Bone; 2004 Oct; 35(4):881-91. PubMed ID: 15454095 [Abstract] [Full Text] [Related]
3. Role of endochondral ossification of articular cartilage and functional adaptation of the subchondral plate in the development of fatigue microcracking of joints. Muir P, McCarthy J, Radtke CL, Markel MD, Santschi EM, Scollay MC, Kalscheur VL. Bone; 2006 Mar; 38(3):342-9. PubMed ID: 16275175 [Abstract] [Full Text] [Related]
5. Morphologic changes associated with functional adaptation of the navicular bone of horses. Bentley VA, Sample SJ, Livesey MA, Scollay MC, Radtke CL, Frank JD, Kalscheur VL, Muir P. J Anat; 2007 Nov; 211(5):662-72. PubMed ID: 17850287 [Abstract] [Full Text] [Related]
6. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow. Muir P, Sample SJ, Barrett JG, McCarthy J, Vanderby R, Markel MD, Prokuski LJ, Kalscheur VL. Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467 [Abstract] [Full Text] [Related]
7. In vitro fatigue behavior of the equine third metacarpus: remodeling and microcrack damage analysis. Martin RB, Stover SM, Gibson VA, Gibeling JC, Griffin LV. J Orthop Res; 1996 Sep; 14(5):794-801. PubMed ID: 8893774 [Abstract] [Full Text] [Related]
8. The morphological association between microcracks and osteocyte lacunae in human cortical bone. Qiu S, Rao DS, Fyhrie DP, Palnitkar S, Parfitt AM. Bone; 2005 Jul; 37(1):10-5. PubMed ID: 15878702 [Abstract] [Full Text] [Related]
9. Effect of short-term treatment with alendronate on ulnar bone adaptation to cyclic fatigue loading in rats. Barrett JG, Sample SJ, McCarthy J, Kalscheur VL, Muir P, Prokuski L. J Orthop Res; 2007 Aug; 25(8):1070-7. PubMed ID: 17444501 [Abstract] [Full Text] [Related]
10. Spatial distribution of osteocyte lacunae in equine radii and third metacarpals: considerations for cellular communication, microdamage detection and metabolism. Skedros JG, Grunander TR, Hamrick MW. Cells Tissues Organs; 2005 Aug; 180(4):215-36. PubMed ID: 16330878 [Abstract] [Full Text] [Related]
11. Effect of focused and radial extracorporeal shock wave therapy on equine bone microdamage. Da Costa Gómez TM, Radtke CL, Kalscheur VL, Swain CA, Scollay MC, Edwards RB, Santschi EM, Markel MD, Muir P. Vet Surg; 2004 Aug; 33(1):49-55. PubMed ID: 14687186 [Abstract] [Full Text] [Related]
12. Osteocyte lacuna population densities in sheep, elk and horse calcanei. Skedros JG. Cells Tissues Organs; 2005 Aug; 181(1):23-37. PubMed ID: 16439816 [Abstract] [Full Text] [Related]
13. Histomorphometric assessment of Haversian canal and osteocyte lacunae in different-sized osteons in human rib. Qiu S, Fyhrie DP, Palnitkar S, Rao DS. Anat Rec A Discov Mol Cell Evol Biol; 2003 Jun; 272(2):520-5. PubMed ID: 12740946 [Abstract] [Full Text] [Related]
14. Fractures--a preventable hazard of racing thoroughbreds? Riggs CM. Vet J; 2002 Jan; 163(1):19-29. PubMed ID: 11749133 [Abstract] [Full Text] [Related]
15. Quantitative regional associations between remodeling, modeling, and osteocyte apoptosis and density in rabbit tibial midshafts. Hedgecock NL, Hadi T, Chen AA, Curtiss SB, Martin RB, Hazelwood SJ. Bone; 2007 Mar; 40(3):627-37. PubMed ID: 17157571 [Abstract] [Full Text] [Related]
16. Osteon pullout in the equine third metacarpal bone: effects of ex vivo fatigue. Hiller LP, Stover SM, Gibson VA, Gibeling JC, Prater CS, Hazelwood SJ, Yeh OC, Martin RB. J Orthop Res; 2003 May; 21(3):481-8. PubMed ID: 12706021 [Abstract] [Full Text] [Related]
17. Scanning electron microscopic examination of third metacarpal/third metatarsal bone failure surfaces in thoroughbred racehorses with condylar fracture. Stepnik MW, Radtke CL, Scollay MC, Oshel PE, Albrecht RM, Santschi EM, Markel MD, Muir P. Vet Surg; 2004 May; 33(1):2-10. PubMed ID: 14687180 [Abstract] [Full Text] [Related]
18. Evidence for the role of osteocytes in the initiation of targeted remodeling. Heino TJ, Kurata K, Higaki H, Väänänen HK. Technol Health Care; 2009 May; 17(1):49-56. PubMed ID: 19478405 [Abstract] [Full Text] [Related]
19. Osteocyte recruitment declines as the osteon fills in: interacting effects of osteocytic sclerostin and previous hip fracture on the size of cortical canals in the femoral neck. Power J, Doube M, van Bezooijen RL, Loveridge N, Reeve J. Bone; 2012 May; 50(5):1107-14. PubMed ID: 22353552 [Abstract] [Full Text] [Related]
20. Collagen fiber organization is related to mechanical properties and remodeling in equine bone. A comparison of two methods. Martin RB, Lau ST, Mathews PV, Gibson VA, Stover SM. J Biomech; 1996 Dec; 29(12):1515-21. PubMed ID: 8945649 [Abstract] [Full Text] [Related] Page: [Next] [New Search]