These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


130 related items for PubMed ID: 15913252

  • 1. Properties of flame synthesized germanium oxide nanoparticles.
    Simanzhenkov V, Wiggers H, Roth P.
    J Nanosci Nanotechnol; 2005 Mar; 5(3):436-41. PubMed ID: 15913252
    [Abstract] [Full Text] [Related]

  • 2. Synthesis of germanium oxide nanoparticles in low-pressure premixed flames.
    Simanzhenkov V, Ifeacho P, Wiggers H, Knipping J, Roth P.
    J Nanosci Nanotechnol; 2004 Mar; 4(1-2):157-61. PubMed ID: 15112560
    [Abstract] [Full Text] [Related]

  • 3. Synthesis and characterization of germanium oxide nanowires.
    Kalyanikutty KP, Gundiah G, Govindaraj A, Rao CN.
    J Nanosci Nanotechnol; 2005 Mar; 5(3):421-4. PubMed ID: 15913249
    [Abstract] [Full Text] [Related]

  • 4. In-situ formation of ultrathin Ge nanobelts bonded with nanotubes.
    Han WQ, Wu L, Zhu Y, Strongin M.
    Nano Lett; 2005 Jul; 5(7):1419-22. PubMed ID: 16178250
    [Abstract] [Full Text] [Related]

  • 5. Formation and size dependence of germanium nanoparticles at different helium pressures.
    Singh DP, Singh AK, Srivastava ON.
    J Nanosci Nanotechnol; 2003 Dec; 3(6):545-8. PubMed ID: 15002138
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Single crystalline Ge(1-x)Mn(x) nanowires as building blocks for nanoelectronics.
    van der Meulen MI, Petkov N, Morris MA, Kazakova O, Han X, Wang KL, Jacob AP, Holmes JD.
    Nano Lett; 2009 Jan; 9(1):50-6. PubMed ID: 19032036
    [Abstract] [Full Text] [Related]

  • 9. Significant reduction of thermal conductivity in Si/Ge core-shell nanowires.
    Hu M, Giapis KP, Goicochea JV, Zhang X, Poulikakos D.
    Nano Lett; 2011 Feb 09; 11(2):618-23. PubMed ID: 21141989
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. A solvothermal route to ZnO and Mn-doped ZnO nanoparticles using the cupferron complex as the precursor.
    Ghosh M, Seshadri R, Rao CN.
    J Nanosci Nanotechnol; 2004 Feb 09; 4(1-2):136-40. PubMed ID: 15112556
    [Abstract] [Full Text] [Related]

  • 13. H2 uptake and synthesis of the Li-dispersed manganese oxide nanotubes.
    Lee JB, Lee SC, Kim HJ.
    J Nanosci Nanotechnol; 2007 Nov 09; 7(11):4033-6. PubMed ID: 18047112
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Sn(78)Ge(22)@carbon core-shell nanowires as fast and high-capacity lithium storage media.
    Lee H, Cho J.
    Nano Lett; 2007 Sep 09; 7(9):2638-41. PubMed ID: 17661523
    [Abstract] [Full Text] [Related]

  • 17. Temperature-dependent growth of germanium oxide and silicon oxide based nanostructures, aligned silicon oxide nanowire assemblies, and silicon oxide microtubes.
    Hu J, Jiang Y, Meng X, Lee CS, Lee ST.
    Small; 2005 Apr 09; 1(4):429-38. PubMed ID: 17193468
    [Abstract] [Full Text] [Related]

  • 18. Hydrothermal synthesis of vanadium oxide nanotubes from oxide precursors.
    Sharma S, Thomas J, Ramanan A, Panthöfer M, Jansen M.
    J Nanosci Nanotechnol; 2007 Jun 09; 7(6):1985-9. PubMed ID: 17654977
    [Abstract] [Full Text] [Related]

  • 19. MgO nanowire growth from Mg metal and SiO2.
    Hu L, Li YX, Qu JP, Huang ZX, Huang XT, Ding XX, Tang C, Qi SR.
    J Nanosci Nanotechnol; 2004 Nov 09; 4(8):1071-5. PubMed ID: 15656205
    [Abstract] [Full Text] [Related]

  • 20. Charge influence and growth mechanism of ZnO nanorods.
    Park SH, Han SW.
    J Nanosci Nanotechnol; 2007 Jul 09; 7(7):2526-9. PubMed ID: 17663276
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.