These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
101 related items for PubMed ID: 15914908
1. The role of conserved arginine residue in loop 4 of glycoside hydrolase family 10 xylanases. Nishimoto M, Kitaoka M, Fushinobu S, Hayashi K. Biosci Biotechnol Biochem; 2005 May; 69(5):904-10. PubMed ID: 15914908 [Abstract] [Full Text] [Related]
2. Molecular anatomy of the alkaliphilic xylanase from Bacillus halodurans C-125. Nishimoto M, Fushinobu S, Miyanaga A, Kitaoka M, Hayashi K. J Biochem; 2007 May; 141(5):709-17. PubMed ID: 17383976 [Abstract] [Full Text] [Related]
3. Cloning, expression and characterization of glycoside hydrolase family 11 endoxylanase from Bacillus pumilus ARA. Qu W, Shao W. Biotechnol Lett; 2011 Jul; 33(7):1407-16. PubMed ID: 21369910 [Abstract] [Full Text] [Related]
4. Employing chimeric xylanases to identify regions of an alkaline xylanase participating in enzyme activity at basic pH. Nishimoto M, Kitaoka M, Hayashi K. J Biosci Bioeng; 2002 Jul; 94(5):395-400. PubMed ID: 16233324 [Abstract] [Full Text] [Related]
5. An extracellular endo-1,4-beta-xylanase from Aspergillus japonicus: Purification, properties, and characterization of the encoding gene. Wakiyama M, Yoshihara K, Hayashi S, Ohta K. J Biosci Bioeng; 2010 Mar; 109(3):227-9. PubMed ID: 20159568 [Abstract] [Full Text] [Related]
6. Characterization of glycosynthase mutants derived from glycoside hydrolase family 10 xylanases. Sugimura M, Nishimoto M, Kitaoka M. Biosci Biotechnol Biochem; 2006 May; 70(5):1210-7. PubMed ID: 16717424 [Abstract] [Full Text] [Related]
7. An alkaline active xylanase: insights into mechanisms of high pH catalytic adaptation. Mamo G, Thunnissen M, Hatti-Kaul R, Mattiasson B. Biochimie; 2009 Sep; 91(9):1187-96. PubMed ID: 19567261 [Abstract] [Full Text] [Related]
8. Study of the active site residues of a glycoside hydrolase family 8 xylanase. Collins T, De Vos D, Hoyoux A, Savvides SN, Gerday C, Van Beeumen J, Feller G. J Mol Biol; 2005 Nov 25; 354(2):425-35. PubMed ID: 16246370 [Abstract] [Full Text] [Related]
9. Cloning, functional expression and characterization of three Phanerochaete chrysosporium endo-1,4-beta-xylanases. Decelle B, Tsang A, Storms RK. Curr Genet; 2004 Sep 25; 46(3):166-75. PubMed ID: 15278289 [Abstract] [Full Text] [Related]
10. Prediction and rationalization of the pH dependence of the activity and stability of family 11 xylanases. Kongsted J, Ryde U, Wydra J, Jensen JH. Biochemistry; 2007 Nov 27; 46(47):13581-92. PubMed ID: 17960918 [Abstract] [Full Text] [Related]
11. Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: crystal structure of the CBM22-1-GH10 modules complexed with xylohexaose. Najmudin S, Pinheiro BA, Prates JA, Gilbert HJ, Romão MJ, Fontes CM. J Struct Biol; 2010 Dec 27; 172(3):353-62. PubMed ID: 20682344 [Abstract] [Full Text] [Related]
12. The structure of a GH10 xylanase from Fusarium oxysporum reveals the presence of an extended loop on top of the catalytic cleft. Dimarogona M, Topakas E, Christakopoulos P, Chrysina ED. Acta Crystallogr D Biol Crystallogr; 2012 Jul 27; 68(Pt 7):735-42. PubMed ID: 22751658 [Abstract] [Full Text] [Related]
13. Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase A: identification of catalytic and cellulose binding domains. Sakka K, Kojima Y, Kondo T, Karita S, Ohmiya K, Shimada K. Biosci Biotechnol Biochem; 1993 Feb 27; 57(2):273-7. PubMed ID: 7763496 [Abstract] [Full Text] [Related]
14. Understanding the structural basis for substrate and inhibitor recognition in eukaryotic GH11 xylanases. Vardakou M, Dumon C, Murray JW, Christakopoulos P, Weiner DP, Juge N, Lewis RJ, Gilbert HJ, Flint JE. J Mol Biol; 2008 Feb 01; 375(5):1293-305. PubMed ID: 18078955 [Abstract] [Full Text] [Related]
15. Structural Insight into and Mutational Analysis of Family 11 Xylanases: Implications for Mechanisms of Higher pH Catalytic Adaptation. Bai W, Zhou C, Zhao Y, Wang Q, Ma Y. PLoS One; 2015 Feb 01; 10(7):e0132834. PubMed ID: 26161643 [Abstract] [Full Text] [Related]
16. Catalytic role for arginine 188 in the C-C hydrolase catalytic mechanism for Escherichia coli MhpC and Burkholderia xenovorans LB400 BphD. Li C, Li JJ, Montgomery MG, Wood SP, Bugg TD. Biochemistry; 2006 Oct 17; 45(41):12470-9. PubMed ID: 17029402 [Abstract] [Full Text] [Related]
17. Identification of structural determinants for inhibition strength and specificity of wheat xylanase inhibitors TAXI-IA and TAXI-IIA. Pollet A, Sansen S, Raedschelders G, Gebruers K, Rabijns A, Delcour JA, Courtin CM. FEBS J; 2009 Jul 17; 276(14):3916-27. PubMed ID: 19769747 [Abstract] [Full Text] [Related]
18. Molecular mechanisms associated with xylan degradation by Xanthomonas plant pathogens. Santos CR, Hoffmam ZB, de Matos Martins VP, Zanphorlin LM, de Paula Assis LH, Honorato RV, Lopes de Oliveira PS, Ruller R, Murakami MT. J Biol Chem; 2014 Nov 14; 289(46):32186-32200. PubMed ID: 25266726 [Abstract] [Full Text] [Related]
19. Acidophilic adaptation of family 11 endo-beta-1,4-xylanases: modeling and mutational analysis. de Lemos Esteves F, Ruelle V, Lamotte-Brasseur J, Quinting B, Frère JM. Protein Sci; 2004 May 14; 13(5):1209-18. PubMed ID: 15096627 [Abstract] [Full Text] [Related]
20. Engineering a de novo internal disulfide bridge to improve the thermal stability of xylanase from Bacillus stearothermophilus No. 236. Jeong MY, Kim S, Yun CW, Choi YJ, Cho SG. J Biotechnol; 2007 Jan 01; 127(2):300-9. PubMed ID: 16919348 [Abstract] [Full Text] [Related] Page: [Next] [New Search]