These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


186 related items for PubMed ID: 15914930

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Transfer RNA and aminoacyl-tRNA synthetases in cells of E. coli infected with phage MS2.
    Berzin VM, Gren EY.
    Mol Biol; 1972; 6(6):674-8. PubMed ID: 4582405
    [No Abstract] [Full Text] [Related]

  • 3. Mechanisms of molecular recognition of tRNAs by aminoacyl-tRNA synthetases.
    Nureki O, Tateno M, Niimi T, Kohno T, Muramatsu T, Kanno H, Muto Y, Giege R, Yokoyama S.
    Nucleic Acids Symp Ser; 1991; (25):165-6. PubMed ID: 1726806
    [Abstract] [Full Text] [Related]

  • 4. Influence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
    Sherlin LD, Bullock TL, Newberry KJ, Lipman RS, Hou YM, Beijer B, Sproat BS, Perona JJ.
    J Mol Biol; 2000 Jun 02; 299(2):431-46. PubMed ID: 10860750
    [Abstract] [Full Text] [Related]

  • 5. Position of aminoacylation of individual Escherichia coli and yeast tRNAs.
    Hecht SM, Chinualt AC.
    Proc Natl Acad Sci U S A; 1976 Feb 02; 73(2):405-9. PubMed ID: 1108023
    [Abstract] [Full Text] [Related]

  • 6. Recognition of tRNA identity determinants by aminoacyl-tRNA synthetases.
    Muramatsu T, Nureki O, Kanno H, Niimi T, Tateno M, Kohno T, Kawai G, Miyazawa T, Muto Y, Yokoyama S.
    Nucleic Acids Symp Ser; 1990 Feb 02; (22):119-20. PubMed ID: 2101890
    [Abstract] [Full Text] [Related]

  • 7. Metabolism of D-aminoacyl-tRNAs in Escherichia coli and Saccharomyces cerevisiae cells.
    Soutourina J, Plateau P, Blanquet S.
    J Biol Chem; 2000 Oct 20; 275(42):32535-42. PubMed ID: 10918062
    [Abstract] [Full Text] [Related]

  • 8. Anticodon sequence mutants of Escherichia coli initiator tRNA: effects of overproduction of aminoacyl-tRNA synthetases, methionyl-tRNA formyltransferase, and initiation factor 2 on activity in initiation.
    Mayer C, Köhrer C, Kenny E, Prusko C, RajBhandary UL.
    Biochemistry; 2003 May 06; 42(17):4787-99. PubMed ID: 12718519
    [Abstract] [Full Text] [Related]

  • 9. Similarities and differences in tRNA identity between Escherichia coli and Saccharomyces cerevisiae: evolutionary conservation and divergence.
    Nameki N, Asahara H, Tamura K, Himeno H, Hasegawa T, Shimizu M.
    Nucleic Acids Symp Ser; 1995 May 06; (34):205-6. PubMed ID: 8841624
    [Abstract] [Full Text] [Related]

  • 10. The role of anticodon bases and the discriminator nucleotide in the recognition of some E. coli tRNAs by their aminoacyl-tRNA synthetases.
    Shimizu M, Asahara H, Tamura K, Hasegawa T, Himeno H.
    J Mol Evol; 1992 Nov 06; 35(5):436-43. PubMed ID: 1487827
    [Abstract] [Full Text] [Related]

  • 11. [Functional and evolutionary aspects of the aminoacyl-tRNA synthetases].
    Silva González E, Mosqueira Pérez Salazar FG.
    Rev Latinoam Microbiol; 1991 Nov 06; 33(1):87-101. PubMed ID: 1727028
    [Abstract] [Full Text] [Related]

  • 12. Alteration of the intracellular concentration of aminoacyl-tRNA synthetases and isoaccepting tRNAs during amino-acid limited growth in Escherichia coli.
    Thomale J, Nass G.
    Eur J Biochem; 1978 Apr 17; 85(2):407-18. PubMed ID: 348470
    [Abstract] [Full Text] [Related]

  • 13. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation.
    Seno T, Agris PF, Söll D.
    Biochim Biophys Acta; 1974 May 31; 349(3):328-38. PubMed ID: 4366808
    [No Abstract] [Full Text] [Related]

  • 14. Recognition of tRNAs by aminoacyl-tRNA synthetases: Escherichia coli tRNAMet and E. coli methionyl-tRNA synthetase.
    Schulman LH, Pelka H.
    Fed Proc; 1984 Dec 31; 43(15):2977-80. PubMed ID: 6389181
    [Abstract] [Full Text] [Related]

  • 15. Transfer RNA recognition by aminoacyl-tRNA synthetases.
    Beuning PJ, Musier-Forsyth K.
    Biopolymers; 1999 Dec 31; 52(1):1-28. PubMed ID: 10737860
    [Abstract] [Full Text] [Related]

  • 16. Pyrrolysyl-tRNA Synthetase with a Unique Architecture Enhances the Availability of Lysine Derivatives in Synthetic Genetic Codes.
    Yamaguchi A, Iraha F, Ohtake K, Sakamoto K.
    Molecules; 2018 Sep 26; 23(10):. PubMed ID: 30261594
    [Abstract] [Full Text] [Related]

  • 17. Non-coordinate regulation of enzymes involved in transfer RNA metabolism in Escherichia coli.
    Ny T, Thomale J, Hjalmarsson K, Nass G, Björk GR.
    Biochim Biophys Acta; 1980 Apr 30; 607(2):277-84. PubMed ID: 6154481
    [Abstract] [Full Text] [Related]

  • 18. Pyrrolysine analogues as substrates for pyrrolysyl-tRNA synthetase.
    Polycarpo CR, Herring S, Bérubé A, Wood JL, Söll D, Ambrogelly A.
    FEBS Lett; 2006 Dec 11; 580(28-29):6695-700. PubMed ID: 17126325
    [Abstract] [Full Text] [Related]

  • 19. Evidence for single mechanism for aminoacyl-tRNA synthetases including aminoacyl adenylates as intermediates.
    Kim JJ, Chakraburtty K, Mehler AH.
    J Biol Chem; 1977 Apr 25; 252(8):2698-701. PubMed ID: 323252
    [Abstract] [Full Text] [Related]

  • 20. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
    Uemura H, Conley J, Yamao F, Rogers J, Söll D.
    Protein Seq Data Anal; 1988 Apr 25; 1(6):479-85. PubMed ID: 2464170
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.