These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


274 related items for PubMed ID: 15915250

  • 1. Microchannel protein separation by electric field gradient focusing.
    Petsev DN, Lopez GP, Ivory CF, Sibbett SS.
    Lab Chip; 2005 Jun; 5(6):587-97. PubMed ID: 15915250
    [Abstract] [Full Text] [Related]

  • 2. Isoelectric focusing in a poly(dimethylsiloxane) microfluidic chip.
    Cui H, Horiuchi K, Dutta P, Ivory CF.
    Anal Chem; 2005 Mar 01; 77(5):1303-9. PubMed ID: 15732911
    [Abstract] [Full Text] [Related]

  • 3. Microfluidic high-resolution free-flow isoelectric focusing.
    Kohlheyer D, Eijkel JC, Schlautmann S, van den Berg A, Schasfoort RB.
    Anal Chem; 2007 Nov 01; 79(21):8190-8. PubMed ID: 17902700
    [Abstract] [Full Text] [Related]

  • 4. Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip.
    Thorslund S, Lindberg P, Andrén PE, Nikolajeff F, Bergquist J.
    Electrophoresis; 2005 Dec 01; 26(24):4674-83. PubMed ID: 16273585
    [Abstract] [Full Text] [Related]

  • 5. Dynamic analyte introduction and focusing in plastic microfluidic devices for proteomic analysis.
    Li Y, DeVoe DL, Lee CS.
    Electrophoresis; 2003 Jan 01; 24(1-2):193-9. PubMed ID: 12652591
    [Abstract] [Full Text] [Related]

  • 6. Fully integrated PDMS/SU-8/quartz microfluidic chip with a novel macroporous poly dimethylsiloxane (PDMS) membrane for isoelectric focusing of proteins using whole-channel imaging detection.
    Shameli SM, Elbuken C, Ou J, Ren CL, Pawliszyn J.
    Electrophoresis; 2011 Feb 01; 32(3-4):333-9. PubMed ID: 21298660
    [Abstract] [Full Text] [Related]

  • 7. Free-flow zone electrophoresis and isoelectric focusing using a microfabricated glass device with ion permeable membranes.
    Kohlheyer D, Besselink GA, Schlautmann S, Schasfoort RB.
    Lab Chip; 2006 Mar 01; 6(3):374-80. PubMed ID: 16511620
    [Abstract] [Full Text] [Related]

  • 8. Modeling of a microfluidic channel in the presence of an electrostatic induced cross-flow.
    Scuor N, Gallina P, Sbaizero O, Mahajan RL.
    Biomed Microdevices; 2005 Sep 01; 7(3):231-42. PubMed ID: 16133811
    [Abstract] [Full Text] [Related]

  • 9. Design and characterization of poly(dimethylsiloxane)-based valves for interfacing continuous-flow sampling to microchip electrophoresis.
    Li MW, Huynh BH, Hulvey MK, Lunte SM, Martin RS.
    Anal Chem; 2006 Feb 15; 78(4):1042-51. PubMed ID: 16478094
    [Abstract] [Full Text] [Related]

  • 10. Improved protein separation by microchip isoelectric focusing with stepwise gradient of electric field strength.
    Cong Y, Liang Y, Zhang L, Zhang W, Zhang Y.
    J Sep Sci; 2009 Feb 15; 32(3):462-5. PubMed ID: 19173333
    [Abstract] [Full Text] [Related]

  • 11. Fabrication of a hybrid PDMS/SU-8/quartz microfluidic chip for enhancing UV absorption whole-channel imaging detection sensitivity and application for isoelectric focusing of proteins.
    Ou J, Glawdel T, Ren CL, Pawliszyn J.
    Lab Chip; 2009 Jul 07; 9(13):1926-32. PubMed ID: 19532968
    [Abstract] [Full Text] [Related]

  • 12. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC, Mey T, Koster S, Verpoorte E.
    Lab Chip; 2009 Jul 07; 9(13):1914-25. PubMed ID: 19532967
    [Abstract] [Full Text] [Related]

  • 13. Microfluidic system for dielectrophoretic separation based on a trapezoidal electrode array.
    Choi S, Park JK.
    Lab Chip; 2005 Oct 07; 5(10):1161-7. PubMed ID: 16175274
    [Abstract] [Full Text] [Related]

  • 14. Polyelectrolyte coatings for microchip capillary electrophoresis.
    Liu Y, Henry CS.
    Methods Mol Biol; 2006 Oct 07; 339():57-64. PubMed ID: 16790867
    [Abstract] [Full Text] [Related]

  • 15. Miniaturized two-dimensional capillary electrophoresis on a microchip for analysis of the tryptic digest of proteins.
    Cong Y, Zhang L, Tao D, Liang Y, Zhang W, Zhang Y.
    J Sep Sci; 2008 Feb 07; 31(3):588-94. PubMed ID: 18219655
    [Abstract] [Full Text] [Related]

  • 16. Frequency bandwidth limitation of external pulse electric field in microchannels. Applications to analyte velocity modulation detections.
    Wang SC.
    Biosens Bioelectron; 2004 Jul 30; 20(1):139-42. PubMed ID: 15142587
    [Abstract] [Full Text] [Related]

  • 17. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis.
    Vickers JA, Caulum MM, Henry CS.
    Anal Chem; 2006 Nov 01; 78(21):7446-52. PubMed ID: 17073411
    [Abstract] [Full Text] [Related]

  • 18. Performance optimization in electric field gradient focusing.
    Sun X, Farnsworth PB, Tolley HD, Warnick KF, Woolley AT, Lee ML.
    J Chromatogr A; 2009 Jan 02; 1216(1):159-64. PubMed ID: 19081099
    [Abstract] [Full Text] [Related]

  • 19. Integration of continuous-flow sampling with microchip electrophoresis using poly(dimethylsiloxane)-based valves in a reversibly sealed device.
    Li MW, Martin RS.
    Electrophoresis; 2007 Jul 02; 28(14):2478-88. PubMed ID: 17577199
    [Abstract] [Full Text] [Related]

  • 20. Effects of separation length and voltage on isoelectric focusing in a plastic microfluidic device.
    Das C, Fan ZH.
    Electrophoresis; 2006 Sep 02; 27(18):3619-26. PubMed ID: 16915565
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.